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Abstract—Hybrid cloud is a widely adopted framework where
on-premise storage and/or compute resources are combined with
public cloud system. This paper explores the storage aspect
of this framework, which requires designing coding schemes
that are aware of both local and global components of the
available storage space. The coding schemes should provide
efficient repair mechanisms for the data stored on the public
cloud (global storage space) and utilize the local storage space to
facilitate seamless access to the overall information stored on the
hybrid cloud storage. This paper presents a mathematical model
for hybrid cloud storage which takes all these requirements
into account. The paper then extends the information flow
graph approach to characterize the fundamental limits on access
bandwidth of the system, i.e., the amount of data downloaded
from the public cloud during the data reconstruction process.
This paper also presents several explicit coding schemes that
utilize the available local storage space to attain the fundamental
limit on the access bandwidth. The setup where multiple clients
with varying local storage spaces are supported by a single
global storage space is also addressed.

I. INTRODUCTION

Cloud computing is one of the most pervasive technology
paradigms in the recent past that has transformed the ways
with which various businesses operate. The cloud systems
host basic IT resources, including storage and compute,
that are made available to businesses on their demand with
varying degrees of control. This frees these institutions from
the burden of managing most of the IT resources needed for
their successful operations; consequently, realizing improved
efficiency with significant reductions in their day-to-day
operating costs.

However, various practical and policy concerns prevent
complete migration to public cloud systems, where data is
stored and processed in the data centers hosted by a third-
party vendor. For example, the latency of data access from
a public cloud is unavoidably higher than that from the
storage locally available at the firm. This gap in latency can
significantly increase during a catastrophic event which might
hamper the critical operations [1]. Additionally, businesses
may not want to host sensitive and valuable information on
public clouds which are subject to various covert attacks [2],
[3], where unauthorized agents may gain access to the
valuable information through shared hardware resources.

These concerns motivate the adoption of hybrid cloud
systems, where local IT resources of a business are combined
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Fig. 1: Generic setup of a hybrid cloud system. Such a cloud
system combines the limited compute and storage resources
available locally at a business with the large scale compute
and storage resources publicly hosted by a third party vendor.

with the remote IT resources provided by a third parity
vendor in a single environment (cf. Figure 1). This enables
the business to locally host the sensitive information along
with the mission critical data processing. The ability to access
the remote resources within a single environment allows the
businesses to employ cloud-bursting, where they can delegate
the processing tasks to remote resources during the spikes in
the demand for compute resources. Furthermore, businesses
can meet their growing storage needs by storing the cold or
warm data on the remotely available global storage space.

In this paper, we focus on a coding theoretic treatment
of the storage aspect of the hybrid cloud systems. Recently,
the problem of designing reliable and efficient cloud storage
(a.k.a. distributed storage systems) has received a great deal
of attention from the research community (see e.g., [4]–[10]
and references therein). In particular, distributed nature of
cloud storage presents challenges that are unique to cloud
storage systems. So called node repair problem is one such
challenge, which necessitates designing coding schemes that
allow for resource efficient mechanisms to reconstruct the
small portion of stored information [5]. The node repair
problem is motivated by the frequent scenarios in real-life
storage systems where a small number of storage nodes in
the system are lost or temporarily inaccessible. The progress
in addressing the issue of node repair has led to many novel
code constructions (e.g., [6], [11]–[18]) and application of
the obtained codes in real-life systems [7]–[10].



However, most of the existing literature does not address
the design of hybrid cloud storage systems as it primarily
studies a setup which is closer to the public cloud storage.
The existing work does not focus on the inherent asymmetry
between local and global storages spaces, which is present in
a hybrid cloud storage system. This paper aims to address this
issue by developing a theoretical framework that takes the
specific requirements of hybrid cloud storage into account.
The framework ensures that the information is reliably stored
on a hybrid cloud storage system so that it is possible to
perform repair-bandwidth efficient node repair in the global
storage space. This ensures seamless low cost operation and
availability of the remote storage resources. Additionally, the
framework exploits the local storage space to improve the
efficiency of the data access in a hybrid cloud storage system.
In particular, a data access request from an end user can be
served by combining the information stored on a sufficient
number of storage nodes in the global storage space with
the content of the local storage space. This leads to the
reduced utilization of various system resources, including the
bandwidth between the remote storage nodes and the end
user.

We first generalize the information flow graph approach
from [5] to handle the asymmetry between local and global
storage spaces. The generalized approach helps us obtain
a lower bound on the access-bandwidth of a hybrid cloud
storage system, which refers to the amount of data down-
loaded from the global storage nodes during a data access.
We also employ information flow graph approach to study the
setting where multiple local storage spaces with varying sizes
interact with a global storage space. We then utilize existing
code constructions for repair-bandwidth efficient codes to ob-
tain coding schemes that ensure small access-bandwidth. The
obtained schemes also attain the bound on access bandwidth
for a large range of system parameters. Here, we note that our
proposed schemes for hybrid cloud storage utilize the entire
storage space comprising of local and global resources as a
single environment. This is consistent with the approach of
having a single namespace across the entire storage space in
real-life hybrid cloud systems [19].

A. Related work

In [20], Maddah-Ali and Niesen study a caching setup
where local storage close to end-users is utilized to reduce
real-time communication from a content server to the end-
users irrespective of their request pattern. There are multiple
key differences between the caching setup from [20] and the
hybrid storage model considered here. One such difference
is that Maddah-Ali and Niesen only assume a centralized
server and do not focus on the distributed storage setup at the
storage side. Therefore, they do not take the server side data
management into account which is one of the main objectives
in our work. Another difference is the mode of operation. As
compared to the caching setup, the consumption of the stored
content in a hybrid storage model is much more restricted
as the business deploying the hybrid storage has reasonable
control over both the stored content and the request pattern.

We refer the reader to [21] and the references therein for the
large amount of follow-up work on [20].

In [22], Luo et al. explore a caching setup [20] with
coded distributed storage at server side. They focus on the
setting where coding scheme with a small number of parities
are employed by the distributed storage system serving the
users with local caches. Similarly, in [23], Aggarwal et al.
study the cache optimization issues in the presence of coded
distributed storage system. However, both of these works
do not address the management of the distributed storage,
namely node repairs. In this paper, in addition to focusing on
the node repairs, we also explore the trade-off between local
storage and access bandwidth. We note that, [24] considered
the hybrid cloud system with security constraints, where the
focus was on how one can benefit from the local storage by
storing random symbols in order to provide security against
eavesdroppers.

Organization. The rest of the paper is organized as follows.
Section II presents the system model for hybrid storage
studied in this paper. We also give a background on the
repair-bandwidth efficient node repair in distributed storage
systems [5] and the product-matrix code construction by
Rashmi et al. [11]. Section III presents the min-cut analysis
on the information flow graph associated with our hybrid
storage model and explores the extreme points of the obtained
storage vs. repair-bandwidth trade-off. Section IV and V uti-
lize the product-matrix framework to obtain coding schemes
that exploit local storage to make data access efficient at the
two extreme points of the trade-off, respectively. Section VI
concludes the paper by identifying a few interesting direc-
tions for future research.

II. BACKGROUND

A. System Model

We consider a hybrid cloud storage system which utilizes
a network of n storage nodes as the global storage space.
Each of these nodes has capacity of storing α symbols from
a finite field F. Additionally, the system has a local storage at
its disposal that can store L symbols from F. Throughout this
paper, we treat the local storage as a single centralized unit
which the client can access with very small latency. Let f be
a file that needs to be stored on the hybrid cloud storage. We
assume that the file f comprises M symbols from F. The
file f is first encoded into a codeword containing nα + L
symbols of F, which are then stored on the system. Note the
total storage capacity of the system is nα + L. We assume
that the underlying coding scheme is such that the content
of any k out of n storage nodes is sufficient to reconstruct
all the symbols stored on the global space.

Since node failures are inevitable in a large scale storage
network, we require the ability to perform repair of the
storage nodes in the global storage space. In the event of
a single node failure, the repair process involves replacing
the failed node by a newcomer node, which regenerates the
content of the failed node by downloading β symbols of F
from d helper nodes. We allow the newcomer to contact any
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Fig. 2: Information flow graph representation of a hybrid cloud storage system.

set of d out of n − 1 remaining intact nodes. Note that the
total repair-bandwidth associated with the repair of a single
node failure is γ = dβ.

We use η to denote access bandwidth – the amount
of information dowloaded by the client or data collector
to reconstruct the stored file f . We assume that the data
access process involves contacting k out of n storage nodes.
Therefore, the access bandwidth is clearly upper bounded as
η ≤ kα. We aim to exploit local storage space to reduce
the access bandwidth η. Towards this, we require the client
to download α′ < α symbols from each of the k contacted
nodes. The kα′ downloaded symbols are then combined with
the locally stored L symbols in order to reconstruct the file
f . This translates to the access bandwidth η = kα′ ≤ kα.

B. Information flow graph

We now briefly describe the information flow graph rep-
resentation of a distributed storage system. The min-cut
analysis on these graphs was first utilized in [5] to explore
the storage vs. repair-bandwidth trade-off in a distributed
storage system. Here, we modify the information flow graph
to model the local storage aspect of a hybrid cloud storage
(cf. Figure 2). The modified information flow graph contains
four kinds of nodes:
• Source node S: This node represents the collection of
M symbols of the file f that needs to be stored in the
distributed storage system. The source node is connected
to n storage nodes with edges of capacity α.

• Storage nodes {xi}: Each storage node comprises two
sub-nodes: (i) input node xiin and (ii) output node xiout.
The input nodes represent the symbols downloaded by
each node, while output nodes represent the α symbols
stored in each storage node. The two sub-nodes associated
with a storage node xi are connected with an edge of
capacity α. In the repair process, the input node of any

newcomer node xjin is connected to the output node of
the d helping nodes with edges of capacity β.

• Data collector node DC: This node represents the client
which needs to reconstruct the stored file. The DC is
connected to a set of k nodes with edges of capacity
α′.

• Local storage node LS: This node is connected to both
the source node and the data collector node with edges of
capacity L, that represents the size of the local storage.

Remark 1. The modified information flow graph represen-
tation in Figure 2 differs from the traditional information
flow graph [5] in two ways. First, the local storage node is
not present in the traditional flow graph as the local storage
aspect is not explored in [5]. Besides this, in the modified flow
graphs, the data collector node is connected to k storage
nodes with edges of capacity α′. In [5], the similar edges
are assumed to have infinite capacity. In fact, the presence
of these edges with finite capacity allows us to characterize
the access bandwidth η for a hybrid cloud storage system.

Based on the min-cut analysis of the information flow
graph in [5], Dimakis et al. obtain the following bound on
the size of the stored file in terms of per-node storage α and
repair-bandwidth γ = dβ.

M≤
k−1∑
i=0

min
(
(d− i)β, α

)
. (1)

Recall that the setup considered in [5] has α′ = α and L = 0.
For a given file sizeM, the bound in (1) clearly establishes a
trade-off between per-node storage and repair-bandwidth. In
particular, the two extreme points of this trade-off are referred
to as the minimum repair-bandwidth regeneration (MBR)
point and the minimum storage regeneration (MSR) point,
respectively. The per-node storage and repair-bandwidth at



these two extreme points take the following values.

MBR: (α, β) =

(
2M d

2kd− k2 + k
,

2M
2kd− k2 + k

)
, (2)

MSR: (α, β) =

(
M
k
,

M
k(d− k + 1)

)
. (3)

The codes that attain these two points are referred to as
the MBR codes and the MSR codes, respectively. There
are multiple explicit constructions of these codes known in
the literature. In [11], Rashmi et al. present product-matrix
framework to obtain constructions of both MBR codes and
(low rate) MSR codes.

C. Product matrix (PM) framework [11]

In this paper, we utilize the product-matrix framework to
obtain the codes with the optimal access bandwidth. Here,
we briefly summarize the code constructions obtained by this
framework.

1) PM-MBR construction: Let n, k, and d be the given
system parameters and β = 1. This translates to α = dβ =
d (cf. (2)). We arrange the M = (2kd− k2 + k)/2 symbols
of the underlying file f in a d × d symmetric matrix of the
following form.

M =

 W
k×k

T
k×(d−k)

T t

(d−k)×k
0

(d−k)×(d−k)

 , (4)

where matrix W is a symmetric matrix. Here, for a matrix
A, A

a×b
denotes that A is an a × b matrix. The matrix M is

encoded using a n× d encoding matrix, Ψ = [ Φ
n×k

∆
n×(d−k)

],

to obtain the n × α code matrix C = ΨM . The α symbols
in the i-th row are stored in the i-th node of the storage
system. In order to ensure the repair and reconstruction
properties of the underlying coding scheme, the encoding
matrix Ψ is designed to satisfy the following two conditions:
1) Any d rows of Ψ are independent, and 2) Any k rows of
Φ are independent. Note that these two requirement can be
satisfied by taking Ψ to be a Vandermonde matrix.

Reconstruction of the file: Note that the client contacts k
nodes for the reconstruction. Let ΨDC ,ΦDC and ∆DC be the
sub-matrices related to the k nodes contacted by the client.
Thus, the client has access to the k × α matrix

XDC = ΨDCM = [ΦDC
k×k

∆DC
k×(d−k)

]M

= [ΦDCW + ∆DCT
t ΦDCT ]

(5)

Since ΦDC is a full rank square matrix, its inverse can be
utilized to get

Φ−1DCXDC = [W + Φ−1DC∆DCT
t T ]. (6)

This enables us to recover both T and W , which subsequently
allows us recover all M symbols of the stored file (cf. (4)).

Repair of a single node: Assume that the i-th node is being
repaired. Note that the following α symbols are lost due to

the node failure, Ni = ψt
iM , where ψi

t is the ith row of
the encoding matrix Ψ. Let H = {j1, . . . , jd} denote the
indices of the d helper nodes. Each of the d helper nodes
sends the inner product of their content with the vector ψi

to the newcomer node. As a result, the newcomer node has
access to the following information.

Di =

ψj1
tMψi

...
ψjd

tMψi

 =

ψj1
t

...
ψjd

t

Mψi = Ψrepair Mψi. (7)

It follows from the first requirement satisfied by the encoding
matrix Ψ that its d×α sub-matrix Ψrepair is invertible. Thus,
by multiplying Di with Ψ−1repair, we get Ψ−1repairDi = Mψi.
This way, the newcomer recovers Ni.

2) PM-MSR construction : The MSR code construction in
[11] requires that 2k−2 ≤ d ≤ n−1. TheM symbols of the
file f are arranged in a d×α matrix M . The matrix M takes
the following form in the case of MSR code construction.

M =

[
W1

W2

]
, (8)

where W1 and W2 are two (α×α) symmetric matrices. The
content of n storage nodes is represented by the n×α code
matrix C = ΨM . Here, Ψ is the n×d encoding matrix, which
again can be taken to be a Vandermonde matrix. We refer the
reader to [11] for the descriptions of the reconstruction and
the repair operations of this MSR code construction.

III. MIN-CUT ANALYSIS FOR HYBRID STORAGE

In this section, we utilize the modified information flow
graph (cf. Section II-B) to understand the trade-off among
various parameters of a hybrid cloud storage system. This
involves analyzing the min-cut in the flow graph. We note
that our min-cut analysis slightly differs from that in [5] due
to the presence of local storage and finite capacity edges
between the data collector and storage nodes (cf. Remark 1).
For a given cut separating the data collector node from the
source node, we have three choices to take the contribution
of each of the k contacted nodes cut-value into account: 1)
multiple input edges to the node with capacity β each, 2)
the intermediate edge with capacity α that connects the two
sub-nodes associated with the storage node, or 3) the edge
with capacity α′ that connects the storage node to the data
collector node. Thus, the contribution of a contacted storage
node to a cut can be (d − j)β, α, or α′, where j denotes
the number of previous nodes that have the cut through their
input or intermediate edges. Based on this analysis, we obtain
the following bound on the file size stored on the system.

Proposition 1. For the hybrid cloud storage system, the
stored file size is upper bounded by

M≤ L+ min
j=0,...,k

{
(k − j)α′ +

j−1∑
i=0

min
{

(d− i)β, α
}}
.

(9)

Remark 2. Since we require the data collector to be able
to reconstruct the entire file by combining kα′ symbols



downloaded from the contacted storage nodes with the L
symbols stored at the local storage, we have that

M≤ kα′ + L. (10)

This translates to the following inequalities.

M− L
k

≤ α′ ≤ α. (11)

Note that these inequalities can also be obtained from (9) by
taking j = 0.

In order to better understand the bound in Proposition 1,
let’s consider a function h : {0, . . . , k} → R such that

h(j) = (k − j)α′ +
j−1∑
i=0

min((d− i)β, α). (12)

Note that for any 0 ≤ j ≤ k − 1, we have

h(j + 1)− h(j) = −α′ + α ≥ 0 (13)

or

h(j + 1)− h(j) = −α′ + (d− j)β. (14)

Therefore, the function h(·) is either non-decreasing on the
entire domain (if (13) holds on the entire domain) or it is non-
decreasing up to a point and then it becomes monotonically
decreasing. In both case, the function attains the minimum
value at the extremes, which gives us that

min
j=0,...,k

h(j) = min
{
kα′,

k−1∑
i=0

min
{

(d− i)β, α
}}
. (15)

By combining (15) with the bound in (9), we obtain that

M≤ L+ min
{
kα′,

k−1∑
i=0

min{(d− i)β, α}
}
. (16)

Next, similar to [5], we study the extreme points on the
trade-off highlighted by the bound in (16).

A. Minimum storage point

It follows from (11) that we attain the minimum value for
the storage when we have

α = α′ =
M− L
k

. (17)

In this case, it follows from (16) that

β =
M− L

k(d− k + 1)
. (18)

Therefore, the following corollary follows from this analysis.

Corollary 1. The minimum storage point in the hybrid
storage model is characterized by the tuple

(α, β) =
(M− L

k
,
M− L

k(d− k + 1)

)
. (19)

Moreover, the access bandwidth at the minimum storage is

η = kα′ =M− L. (20)

B. Minimum repair-bandwidth point

In order to minimize the repair-bandwidth, we require that
α ≥ dβ. By taking α = dβ, it follows from (16) that

M = L+ min
{
kα′, kα−

(
k

2

)
β}. (21)

Again, in order to minimize the repair-bandwidth we need to
assume that α′ ≥ α− k−1

2 β, which gives us that

M = L+ kα−
(
k

2

)
β = L+ kdβ −

(
k

2

)
β. (22)

This gives us the following result.

Corollary 2. The minimum repair-bandwidth point in the
hybrid storage model is characterized by the tuple

(α, β) =
( 2(M− L)d

2kd− k2 + k
,

2(M− L)

2kd− k2 + k

)
. (23)

Moreover, the access bandwidth at this point satisfies

η = kα′ ≥M− L. (24)

Remark 3. It follows from Corollary 1 and 2 that the
extreme points on the storage vs. repair-bandwidth trade-off
for hybrid storage correspond to the MSR and MBR point
from [5] with file sizeM−L, respectively. This also suggests
a natural separation based achievability scheme for these
points, which stores L symbols of the file in local storage
and encodes the kα′ = M− L symbols using an MSR (or
MBR) code.

C. Multiple clients

So far we have considered the scenario where the hybrid
cloud supports the clients that have accesses to the same
local storage space, which can be modeled by a single
client with local storage space of L symbols. Next, we
consider the setting with multiple clients that have access
to varying amount of local storage space. Assuming that
{L1, L2, . . . , Lm} denotes the set of different local storage
spaces available at these clients, it’s straight forward to extend
the min-cut analysis over an information flow graph to show
that we have

M≤ min
l∈[m]

Ll + min
{
kα′,

k−1∑
i=0

min{(d− i)β, α}
}
. (25)

Accordingly, the minimum storage and the minimum repair-
bandwidth points in the presence of multiple clients reduce
the tuples

(α, β) =
(M− Lmin

k
,
M− Lmin

k(d− k + 1)

)
, (26)

and

(α, β) =
(2(M− Lmin)d

2kd− k2 + k
,

2(M− Lmin)

2kd− k2 + k

)
, (27)

respectively. Here, we use Lmin to denote minl∈[m] Ll.
Thus, as expected, the per-node storage and the repair-

bandwidth are dictated by the client with the smallest lo-
cal storage space. However, it is possible to design cod-
ing schemes that allow each client to minimize its access



L1

L3

L1

L3

L2 = 0 L2 = 0

LS 1

LS 2

LS 3

S

DC 1

DC 2

DC 3

α

α

α
0

α
0

α
0

α
0

α

α

Fig. 3: Min-cut graph for multiple DCs.

bandwidth according to its local storage space. Here, we
would also like to point out that enabling different access
bandwidths for different clients is not possible with the
natural separation scheme (cf. Remark 3).

IV. CONSTRUCTION FOR MBR CASE

We now present coding schemes to achieve the minimum
bandwidth point on the per node storage vs. repair-bandwidth
trade-off. Without loss of generality, we assume that Lmin =
minl∈[m] Ll = 0, i.e., there exists a client with no local
storage space1. As discussed in Section III-C, the minimum
bandwidth point in this case correspond to the MBR point [5].
In this section, we employ the product-matrix construction
from [11] to encode the file to be stored on the global space.

The said repair-bandwidth (cf. (27)) is guaranteed by the
repair property of the code. Here, we focus on showing that
this code does allow a client to attain the optimal access
bandwidth, i.e., η = kα′ = M − L, where L denotes
the size of the local storage space of the client. First, we
demonstrate this property for the clients corresponding to
Lmin = 0. We then demonstrate the access bandwidth
efficient reconstruction for clients with non-zero local storage
space.

A. Without local storage

Assume that the system employs a product-matrix based
MBR code to store a file of size M (cf. Section II-C1).
Here, we demonstrate the reconstruction of the entire file
by downloading α′ = M

k symbols from each contacted
node with the help of an example2. We then present the
reconstruction process for general parameters.

1If Lmin > 0, then we can separately store Lmin symbols from the file
at each of the client and encode the remaining M− Lmin symbols using
the coding scheme with the reduced local storage space at each client.

2In the literature, an MBR code based distributed storage system is
allowed to download kα >M symbols for the reconstruction [5].

Example 1. Let (n = 6, k = 3, d = α = 4, β = 1,M = 9)
be the parameters of the underlying MBR codes, under F7.
In this case, the message matrix M takes the following form.

M =


u1 u2 u3 u4
u2 u5 u6 u7
u3 u6 u8 u9
u4 u7 u9 0

 . (28)

For these parameters, the optimum α′ satisfies

α′ =
M
k

= α− k − 1

2
β = 4− 1 = 3. (29)

Thus, we hope to download α′ = 3 symbols from each of
the contacted k = 3 nodes during the reconstruction of the
file. We assume that we contact the first three nodes during
the reconstruction. The last two symbols stored in each of
the three contacted nodes give us

X
(3,4)
DC =

1 1 1 1
1 2 4 1
1 3 2 6



u3 u4
u6 u7
u8 u9
u9 0

 . (30)

Using the ideas utilized in (5) and (6), these symbols are
sufficient to recover all the symbols appearing in the last two
columns of matrix M . Now, given the access to the second
symbol in the first two contacted nodes and the first symbol
in the third contacted node, we obtain

X
(2)
DC =

[
1 1 1 1
1 2 4 1

]
u2
u5
u6
u7

 , X
(1)
DC =

[
1 3 2 6

] 
u1
u2
u3
u4

 .
(31)

Combining the already known u6 and u7 with X(2)
DC gives us

X ′
(2)
DC =

[
1 1
1 2

] [
u2
u5

]
. (32)

This enables us to recover u2 and u5. Using the same idea,
we can get u1 from X

(1)
DC . Thus, we recover the whole file

by downloading only 3 symbols from each contacted node.

Next, we show how to generalize this example for a
general product-matrix based MBR code with parameters
(n, k, d, α, β = 1) and α′ = M

k = α − k−1
2 . We first focus

on the case where k is odd. We then comment on how to
handle the settings with even k.

1) Efficient access when k is odd: Again, we assume
that the client contacts the first k nodes in the system. By
downloading the last (d−k) symbols stored in the k contacted
nodes, we get X(k+1:d)

DC = ΦDCT. Since ΦDC is a full
rank matrix, these symbols allow us to recover T . Similar
to Example 1, we can recover the remaining symbols using
backward induction. Towards this, let mi denote the i-th
column of M . For 1 ≤ i ≤ k, assume that we know all the
symbols included in the columns {mi+1, . . . ,md}. Then, by
downloading the i-th symbols from any i out of k contacted
nodes, we get

X
(i)
DC = [ΦDC

i×k
∆DC

i×(d−k)
]mi
d×1

. (33)



The previous knowledge of all the symbols in
{mi+1, . . . ,md} and the symmetry of M implies that
we already know the d − i symbols of mi. This enables us
to get X ′(i)DC as follows.

X ′
(i)
DC = [ΦDC

i×k
∆DC

i×(d−k)
]

 mi
i×1
0

(d−i)×1

 = ΦDC
i×i

mi
i×1

, (34)

where, by abusing the notation, we use mi
i×1

to represent

the first i elements of the vector mi. Now, we can recover
mi after multiplying X ′

(i)
DC by Φ−1DC . Using this backward

induction approach, we are able to reconstruct the whole file
by downloading

η =

k∑
i=1

i+ k(d− k) = kα−
(
k

2

)
(35)

symbols, where we need to download α′ = α− k−1
2 symbols

from each of the contacted nodes.
2) Efficient access when k is even: The same ideas

explored in Section IV-A1 can be employed here as well.
However, the only caveat is that α′ = α − k−1

2 is not an
integer. This issue can be addressed in two potential manners.
(i) Asymmetric download: In this solution, we allow the

data collector to download dα′e symbols from some k/2
contacted nodes, and bα′c symbols from the remaining
k/2 contacted nodes.

(ii) Sub-packetization: In this solution, we can divide each
symbol into two sub-symbols. We then encode the all
M first sub-symbols and all M second sub-symbols
by treating them as separate files. Now, by carefully
utilizing the asymmetric download approach (across two
independent encoded files) as discussed above, we can
ensure that we download the same amount of data from
each of the k contacted nodes.

B. With local storage

We now demonstrate how a client with non-zero local
storage can lower the access bandwidth to M − L. In
particular, we first revisit Example 1 in the presence of non-
zero L.

Example 2. Recall that the parameters of the underlying
MBR code are (n = 6, k = 3, d = α = 4, β = 1). We
assume that the client has local storage of size L = 3, where
it stores the symbols u4, u7, and u9. For these parameters,
the optimum α′ satisfies.

α′ =
M− L
k

= α− k − 1

2
β − L

k
= 4− 1− 1 = 2. (36)

Thus, during an access bandwidth optimal file reconstruction,
the client should download only 2 symbols from each of the
contacted k = 3 nodes. Note that the file reconstruction here
can be achieved in the same way as in Example 1 except that
here the client does not need to download the last symbol
from the contacted nodes. This follows as the client already
stores all the symbols appearing in the last column of M .

The file reconstruction with optimal access bandwidth, as
highlighted in Example 2, can be generalized for other system
parameters in a straightforward manner. Here, we briefly
comment on this. Given the local storage size L and k is
odd, there are two possible cases:

1) k divides L: In this case, we can store any L symbols.
Now, using the same ideas as in (32), the previous
knowledge of the stored symbols help us obtain saving
of L symbols during download.

2) k does not divide L: We can write L as L = sk + r,
where s = bL/kc and 0 ≤ r < k. In this case , the
α′ = M−L

k = α − k−1
2 β − L

k is non-integer. Similar
to Section IV-A2, we can overcome this problem in two
possible ways.
(i) Asymmetric download: During the file reconstruc-

tion, we download dα′e symbols from r contacted
nodes, and bα′c symbols from the remaining k − r
contacted nodes.

(ii) Sub-packetization: We divide each symbol into k
sub-symbols from a sub-field. Then, we separately
encode all sub-symbols with the same order as one
file. This way we get k independent codewords of the
underlying MBR code. Now, by carefully utilizing the
asymmetric download approach (across k independent
encoded files) as discussed above we can ensure that
we download the same amount of data from each of
the k contacted nodes.

V. CONSTRUCTION FOR MSR CASE

In this section, we briefly comment on the issue of ac-
cess bandwidth efficient file reconstruction at the minimum
storage point. Again, without loss of generality we assume
a setup with multiple clients such that Lmin = 0. For the
MSR case, the access bandwidth for a client without any
local storage space is trivially η = kα =M. Therefore, we
only focus on the file reconstruction at the clients with non-
zero local storage space. In this paper, we restrict ourselves
to product-matrix based MSR codes. However, similar results
can be easily obtained for other MSR codes as well.

Let’s consider the product-matrix based MSR codes with
generic parameters (n = 2k−1, k, d = 2k−2, α = k−1, β =
1). In order to demonstrate access bandwidth optimal file
reconstruction, we first focus on the case with L = ik for
i ≥ 1. The setting where k does not divide L can be handle
as illustrated in Section IV-B.

Assuming that L = ik, for i ∈ [α] = [k − 1], we can
achieve the optimal access bandwidth by downloading α′ =
α−i symbols from k nodes during the file reconstruction. We
assume that the client downloads the first α′ = α−i symbols
stored in the k contacted nodes. Therefore, the client stores
the 2

(
i+1
2

)
symbols located in the two i× i symmetric lower

right corners of the sub-matrices of W1 and W2 (cf. (8))
as these symbols do not appear in the downloaded symbols
from the contacted nodes. Moreover, the client utilizes the
remaining local storage space of size L − 2

(
i+1
2

)
= ik −

2
(
i+1
2

)
= (k − 2) + (k − 4) + · · ·+ (k − 2i) to store k − 2j



symbols from the j-th column of M , ∀1 ≤ j ≤ i. Using the
following equation,

X
(1)
DC = ΨDC

k×d



0
...
0

uk−1
...

u2k−2


= Ψ′DC

k×k

 uk−1...
u2k−2

 , (37)

and utilizing the fact that Ψ′DC
k×d

is full rank, the client

can recover the unknown k symbols located in the first
column of M . By symmetry of W1 and W2, this enables
the client to know 2 symbols in each of other columns.
Thus, for the second column, the client now knows k − 2
symbols and recover the unknown k symbols with the help
of the associated linear combinations downloaded from the
k contacted nodes. Continuing this idea till the i-th column
of M , the client has access to ki symbols from the local
storage and already recovered ki symbols from the first i
columns of M . The remaining α′ − i = k − 1− 2i symbols
per contacted node provide k(k− 1− 2i) independent linear
combinations, which are sufficient to recover the required
kα−2ki = k(k−1−2i) remaining required symbols. Hence,
the client is able to reconstruct the whole file with the optimal
access bandwidth η = kα′ = kα− ik =M− L.

VI. CONCLUSION

We carried out a systematic study of trade-off among
various parameters of a hybrid cloud storage system. In
particular, we focused on the utilization of the local storage
space to reduce access-bandwidth, the amount of information
that needs to be downloaded from the global (public) storage
space during a file reconstruction, while ensuring that the
global storage space enables bandwidth efficient repair of
failed storage nodes. This corresponds to a joint optimization
of local and global resources. In this paper, we particularly
focused on the two extreme points of the storage vs. repair-
bandwidth trade-off curve and utilized the product-matrix
based codes to attain these points. It’s an interesting problem
to explore access-bandwidth efficient coding schemes for
intermediate points on the trade-off. Similarly, the hybrid
storage model considered here (especially the information
flow graph) can be further modified to incorporate various
system constraints, including the efficient repair of local
storage space.
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