
Coded Access Architectures for
Dense Memory Systems

Hardik Jain†, Ethan R. Elenberg†, Ankit Singh Rawat‡§, and Sriram Vishwanath†

† The University of Texas at Austin, Austin, TX 78712, USA,
‡ Massachusetts Institute of Technology, Cambridge, MA 02139, USA,

§ University of Massachusetts, Amherst, MA 01003, USA.
E-mail: hardikbjain@utexas.edu, elenberg@utexas.edu, asrawat@mit.edu, sriram@utexas.edu.

Abstract—We explore the use of coding theory in double
data rate (DDR) and high bandwidth memory (HBM) systems.
Modern DDR systems incur large latencies due to contention
of multiple requests on the same memory bank. Our proposed
memory design stores data across DRAM pages in a redundant
manner using Reed-Solomon codes as a building block. A
memory controller then assigns coded versions of the data to
dedicated parity banks. This multi-bank coding scheme creates
multiple ways to retrieve a given data element and allows for
more efficient scheduling in multi-core memory architectures
such as HBM. Our approach differs from conventional, uncoded
systems which only optimize the timing of each incoming memory
request. We implement our proposed memory design on an HBM
DRAM architecture via the Ramulator simulation platform.
Experimental results show that multi-bank coding reduces the
number of contended memory accesses, and thus the overall
latency, for several standard benchmarks. Our design reduces the
number of CPU cycles by nearly 70% compared to an uncoded
baseline.

I. INTRODUCTION

In this era of disruptive development in the fields of data
science and machine learning, computing systems with high
processing capacity are in huge demand. The processing power
of a system is mainly determined by its compute capability
and memory operations. Over the past 50 years, computing
systems have witnessed sustained growth, where according to
Moore’s law, the computational power of these computing
systems has doubled every 18 months [1]. On the other
hand, memory access speed has failed to match this growth
in computational power [2]. Since memory accesses are an
essential part of any program, the stark gap between memory
access speed and CPU speed implies that the memory access
is a major bottleneck towards increasing processing capabili-
ties [3]. In order to reduce large data transfer times between
the processor and the memory, researchers have improved data
access capacity and speed via innovations in integrated circuit
design and memory scheduling. However, these efforts fall
short of keeping the memory access latency low enough to
meet the growing demand for computation.

In general, recent efforts towards increasing compute capa-
bility have utilized multiple cores and high speed architectures.
These approaches have also failed to deliver their intended
benefits, mainly due to slow memory systems which cannot
keep up with requests and therefore delay the overall pro-

cessing speed [4], [5], [6], [2]. Additionally, in a multi-core
setup, the access requests from one core can interfere with
requests from other cores. These contentions further increase
access latency. For example, two cores issuing access requests
for data elements stored on the same memory bank results in
a bank conflict. Since the memory bank can serve only one
access request per memory clock cycle, the second request
must be queued for future clock cycles. As the number of
cores increases, such bank conflicts become more frequent.
This leads to many access requests being queued and waiting
to be served by the slow shared memory.

In this paper we aim at improving the accesses of next-
generation memory systems such as High Bandwidth Memory
(HBM) and Hybrid Memory Cube (HMC). We propose a novel
solution that not only improves access efficiency for memory
reads and writes, but also mitigates bank conflicts which
arise in a multi-core setup. In particular, we employ coding
theoretic techniques to introduce redundancy to data storage.
We then design a retrieval architecture that exploits this
redundancy to provide parallel low latency memory access.
Existing solutions to address latency-related issues in memory
systems are mostly limited to improving command scheduling
and clever data addressing. In contrast, our solution calls for
completely redesigning the memory storage space. Our unique
approach creates multiple ways to serve a read request for
each data element. This allows us to design efficient retrieval
mechanisms which spread the memory accesses intended for
a particular memory bank across multiple other banks. As a
result, the proposed memory design can simultaneously serve
read requests that would cause bank conflicts and queues in
existing systems. We demonstrate the utility of our proposed
memory design by implementing it with DDR and High
Bandwidth Memory (HBM) protocols, although our general
framework is applicable to other memory architectures.
Organization: The rest of this paper is organized as follows.
In Section II we introduce basics of a multi-core setup along
with the necessary background on high bandwidth memory
(HBM) protocols and coding techniques. We then discuss
emulation of multi-port memories using single-port memory
banks and present a detailed account of relevant prior work.
In Section III-A, we propose a coding-based framework to
design the storage space of the memory. Specifically, we focus

Bringing coding closer to hardware
Memory

Bank 1 Bank MBank 2 Bank 3

Memory controller

Core 1 Core 3Core 2 Core N

Fig. 1: Multi-core Architecture with shared memory.

on a specific bank array design which utilizes Reed-Solomon
(RS) codes. Then in Section III-B, we present a novel memory
controller architecture that aims to exploit this coded bank
array to improve read and write accesses to the memory. In
Section IV, we evaluate the proposed RS code based memory
design on an HBM architecture using the Ramulator DRAM
simulation platform [7]. We conclude the paper in Section V.

II. BACKGROUND

This section provides relevant background information
multi-core memory architectures, and coding theory, and re-
lated work.

A. Multi-core Setup and Bank Conflicts

We consider the generic multi-core architecture illustrated
in Figure 1, where N processor cores rely on a shared memory
consisting of M memory banks. All the cores operate in a par-
allel manner and issue access requests to the shared memory
in the event of last level cache misses. These access requests
are received by memory controller, which then arbitrates and
schedules the requests to be served by different memory banks
based on the information stored on the memory banks. In
particular, the memory controller maintains different queues
for each of the M memory banks, which hold the read and
write requests corresponding to the associated bank. These
queues are then sequentially served every memory cycle and
the acknowledgment with data (in the case of a read requests)
is sent to the processor which issued the access request.

Assuming that the storage space of the shared memory
consists of single port memory banks, i.e., it can support a
single access request during a memory cycle, multiple access
requests issued for content stored on the same bank cannot
be served in a single memory cycle. This event is known
as a bank conflict and leads to increased access latency. The
effect of these bank conflicts on the overall access latency
of the shared memory becomes even more pronounced as the
number of cores increases. Thus, the memory controller needs
to avoid such bank conflicts while mapping the access requests

from different cores to the memory banks. One straightforward
solution to mitigate bank conflicts is to employ multi-port
memory banks which can support multiple access requests
to the same bank in a single memory cycle [6]. However,
the existing designs for multi-port memory banks suffer from
increased circuit complexity and large area overhead [5].
Furthermore, in a multi-core setup with large number of cores,
it is very likely for a bank to receive multiple simultaneous
accesses that can exceed the number of ports present at the
bank. Therefore, it’s imperative to explore other solutions to
the bank conflict problem beyond simply employing multi-port
memory banks.

B. Coding Techniques: Preliminaries

Coding theory is the study of various approaches to trans-
form available information into alternative representations
with the aim of precisely controlling data redundancy, which
enables reliable and efficient processing of the information.
Coding has been successfully used in various fields of en-
gineering and computer science, including communications,
compression, cryptography, and data storage. The underlying
transformation is referred to as a code, and its specific form
depends on the application at hand.

1) Block Codes: In coding theory literature, block codes
are one of the most studied classes of codes. An (n, k)
block code transforms (encodes) k message symbols belonging
to a finite alphabet Σ1 to n code symbols belonging to
another finite alphabet Σ2. In many applications, these finite
alphabets are finite fields which are equipped with addition and
multiplication operations. The binary set {0, 1} with modulo
2 addition and usual multiplication is an example of a finite
field. In addition, we assume that both alphabets are the same
finite field F. Under this setup, an (n, k) block code encodes
vectors in Fk to vectors in Fn. The vectors in Fn that are
obtained through the encoding process are called codewords.

The quality of a code is characterized by two parameters: 1)
Rate, which measures the amount of redundancy introduced
during the transformation; and 2) Minimum distance, which
measures the maximum number of code symbols that can fail
without compromising the code’s ability to recover the correct
message symbols. The rate of a block code is defined as

ρ =
k

n
.

The minimum distance of the code dmin is defined as the
minimum number of positions at which any two codewords
differ. A block code with the minimum distance dmin can allow
reconstruction of the original message even after the loss of
any dmin − 1 codeword symbols [8]. Ideally, one would like
both the rate and the minimum distance of the underlying code
to be as large as possible, however, there is a trade-off between
these two parameters [8]. Most notably, the Singleton bound
dictates that dmin ≤ n− k + 1. Maximum distance separable
(MDS) codes attain this bound with equality which makes
them optimally resource efficient (as these codes achieve the
highest possible rate) for a given failure tolerance.

Reed-Solomon (RS) codes [9] are the most celebrated
family of MDS codes that exist for all n and k. However,
these codes typically require working with large field sizes that
scale linearly with n. That said, we can map the arithmetic
over these large fields to the operation of binary field by
viewing each element of the large field as a bit vector, e.g.,
see [10], [11]. We will rely on vectorized RS codes in this
paper. In contrast to other coding schemes that are employed
in existing memory systems like SEC-DED [12], BAMBOO
[13], and ChipKill [14], the RS based memory design in this
paper allows for more intelligent memory controller design by
improving data access.

2) Encoding Memory Banks: As mentioned above, a coding
scheme is characterized by an encoding process that converts
message to codewords. In the context of memory banks, we
will restrict ourselves to systematic encodings, where message
symbols appear as part of the codewords. In particular, we
arrange the given information on some memory banks which
are referred to as data banks. Then we generate parity symbols
which are functions of the symbols stored in the data banks
and store these parity symbols in new sets of memory banks,
referred to as parity banks. Note that these additional banks,
constitute the redundancy in the storage space. Furthermore,
in this paper, we only consider encoding across the same row
address, i.e., only the content stored on a given row address in
the data banks is utilized to generate the parity symbols stored
on the same row address in the parity banks.

The following example helps illustrate the key concepts
and notation related to encoding memory banks to generate
redundant storages space in memory systems.

Example 1: Consider the setup where information is ar-
ranged in two data banks a and b. Each bank has L rows, each
of which can store W bits. Therefore, each bank can be viewed
as an L×W array. For i ∈ [L] , {1, . . . , L}, let a(i) and b(i)
denote the i-th row of the bank a and bank b, respectively.
Moreover, for i ∈ [L] and j ∈ [W] , {1, . . . ,W}, we use
ai,j and bi,j to denote the j-th element in the rows a(i) and
b(i), respectively. Therefore, for i ∈ [L],

a(i) =
(
ai,1, . . . , ai,W

)
∈ {0, 1}W ,

b(i) =
(
bi,1, . . . , bi,W

)
∈ {0, 1}W .

Now, given a map f : {0, 1}W × {0, 1}W → {0, 1}W , we
generate a parity bank p = f(a,b) such that, for i ∈ [L], we
have

p(i) =
(
pi,1, . . . , pi,W

)
= f

(
a(i), b(i)

)
. (1)

Among many choices, if we take the function f to be a bit-
wise XOR, then we get p = a⊕ b, i.e., for i ∈ [L],

p(i) =
(
pi,1, . . . , pi,W

)
= a(i)⊕ b(i)

,
(
ai,1 ⊕ bi,1, . . . , ai,W ⊕ bi,W

)
. (2)

Figure 2 illustrates this coding scheme.

Data BankData Bank Parity Bank
a(1)

a(L)

b(1)

a(L) � b(L)

a(1) � b(1)

b(L)

a b a � b

Fig. 2: Parity bank obtained by performing bit-wise XOR on
the two data banks a and b.

C. Emulating Multi-port Memories

A multi-port memory supports multiple simultaneous ac-
cesses to content stored in the same memory bank. As evident,
such a memory reduces bank conflicts, where some access
requests might get delayed due to a single access request
accessing a particular memory bank. Therefore, multi-port
memories form an essential component of a high performance
multi-core setup. That said, designing true multi-port memory
banks incurs large cost both in terms of circuit complexity
and memory density as compared to single-port memory
banks [15], [16].

This has motivated various research efforts to explore algo-
rithm and/or system level designs to emulate the functionality
of a multi-port memory using a collection of single-port
memory banks, e.g., see [17], [18], [19], [20], [21], [22] and
references therein. The key idea in most of the work in this
direction is to employ single port memory banks to store the
content in a redundant manner. As a result, when the memory
system encounters concurrent accesses leading to bank conflict
in a memory bank, it uses the redundancy in the memory banks
to create ways to simultaneously serve these accesses using
disjoint groups of memory banks. The design of redundant
storage space using single-port memory banks is typically
based on two general approaches: 1) replication [17]; and 2)
erasure coding [19], [21], [22].

We briefly illustrate in Fig. 3 how such emulations of multi-
port memories work. In particular, consider a setup where
we need to store 2L rows of data a = [a(1), . . . , a(L)]T

and b = [b(1), . . . , b(L)]T . We are given single-port memory
banks with each bank having capacity to store L rows of
data. In order to simplify the exposition, we ignore the write
requests for the moment. Our objective is to emulate a multi-
port memory that can support 2 simultaneous read requests to
a and b. Fig. 3a describes a replication-based design to support
2 simultaneous read accesses. Similarly, Fig. 3b shows how
one can generate a parity bank by taking element-wise XOR
of two data banks to enable 2 simultaneous accesses. As it
is evident from this example, in order to support the same
number of read accesses, the replication-based scheme incurs
higher storage cost as it requires more single-port memory
banks to emulate a multi-port memory bank. This observation
is consistent with similar trends observed in other applications,
which usually provide opportunities for sophisticated coding
schemes to replace replication schemes [8], [23]. However, in

Bringing coding closer to hardware

 a

Memory
controller

 a

a(i) a(j)

a(j)a(i)

Read request 1 Read request 2

Bank1 Bank 2

 b b

Bank 3 Bank 4

(a) 2-replication scheme.

Bringing coding closer to hardware

Memory
controller

a(i) a(j)

b(j) a(j) b(j)a(i)

Read request 1 Read request 2

Bank1 Bank 2 Bank 3

a b a � b

�

(b) Bit-wise XOR.

Fig. 3: Supporting multiple simultaneous read accesses using
single-port memory banks. Let’s consider two concurrent
requests for data {a(i), a(j)} which cause bank conflict in
a single memory banks. 1) For the replication-based design,
since both a(i) and a(j) are stored on 2 banks, one of those
banks can be used to serve each request without causing any
bank conflicts. 2) In the coded memory system, as shown in
Figure 3b, we can deal with bank conflict in the following
manner: 1) First request for a(i) can be directly served by
Bank 1 , and 2) The read request for a(j) can be served by
downloading b(j) and a(j) + b(j) from Bank 2 and Bank 3,
respectively.

order to make a coding-based solution viable, especially in the
context of memory systems, it is essential to employ coding
schemes with low computational complexity.

It is easy to generalize the replication scheme (cf. Fig. 3a)
to support r simultaneous read accesses by storing r copies
of each data element on r distinct single-port memory banks.
Similarly, it is possible to employ more sophisticated coding
schemes compared to the one in Fig. 3b to support multiple
concurrent read accesses [24], [25], [26]. However, in order
to translate this approach to a viable solution for a memory
system, it is necessary to account for write requests as well.
Note that the key challenge in employing a redundant storage
space in the presence of write requests is to manage consis-
tency across multiple copies of the data. In addition, one needs
to ensure that the stale content, i.e., the content modified by
a write request, is not supplied in response to a later read
request.

Towards this, Auerbach et al. demonstrate a replication-
based emulation of multi-port memory using single-port mem-
ory banks [17]. This emulation simultaneously supports r
read accesses and w write accesses by storing r · (w + 1)
copies of each data element on r · (w+ 1) distinct single-port
memory banks. In order to see this, assume that these banks
are partitioned in r groups with each group containing w + 1
copies of each data element. The r different groups of banks
are used to serve r distinct read accesses. Assuming that each
group has at least one bank that stores the updated (valid) copy
of each data element, we can use that bank to serve the read
request from the group. In parallel, for every group, we can
perform w write requests on w unused banks in the group.

Note that this process does not cause any bank conflicts and
all the write requests do get performed inside each group.

Focusing on coding-based memory designs to support con-
current read accesses, we can modify the ideas from [17] to
support write requests as well. We can take set of banks that
support r simultaneous read accesses and replicate it (r+w)
times 1. Each of these copies is referred to as a group of
banks. Now, given r read requests we look for the minimum
number of groups that store the most updated version of the
data elements associated with these read requests and serve all
the read requests. In the worst case, this would require using r
different groups. For the w write requests, we commit these w
requests to w different groups that are not used to serve read
requests. Note that there are at least w such groups. While
performing a write request inside a group, we update all the
memory banks of the group accordingly.

Remark 1: Note that the replication-based emulation de-
scribed above incurs a large overall storage cost as this
approach has information rate 1/(r · (w + 1)). Moreover, even
though the coding-based scheme is storage-efficient in the
presence of only read requests, the need to accommodate
write requests makes the storage cost of this approach pro-
hibitively large as well. Assuming that the coding scheme has
information rate ρ, the final rate after (r + w) replications is
ρ/(r + w). In addition to the memory banks, these designs
also require additional storage space to store pointers which
keep track of which memory banks store the latest versions
of the data elements. In order to manage this additional stor-
age requirement, a practical implementation must periodically
synchronize every bank with the most recent version of the
data.

In the memory architecture proposed in this paper, we
completely do away with the additional replications required
by the aforementioned emulation approaches to incorporate
write requests. In this paper, we instead propose to handle
the write requests by modifying the design of the memory
controller (cf. Section III-B). This way, we manage to preserve
the storage-efficiency of a coding-based solution.

D. High Bandwidth Memory

High bandwidth memory (HBM) standard is defined to en-
able future high-performance devices such as GPUs. Figure 4
shows a stack of HBM, where it shows 4 memory core dies
vertically integrated together. Each die has 2 channels, each
one with 8 DRAM banks (B0 - B7). This memory design
enables a 3D scaling of memory, which packs more data in the
same space as compared to 2D scaling, while maintaining the
I/O signal integrity. The architecture also helps the computing
cores to parallelize their access channels, meeting the high
data access requirements while consuming less power. Here we
only mention the key features of the HBM architecture that are
relevant to our goal of reducing access latency using coding

1We note that depending on the specific coding scheme, one can present a
more storage-efficient design. Here, we present a universal scheme that works
for any coding scheme.

2Courtesy: http://www.skhynix.com

http://www.skhynix.com

Fig. 4: High Density Memory (HBM) architecture2. The 3D
stacking of memory channels provides an orthogonal plane to
pack a large amount of storage in a smaller footprint while
maintaining the system’s electromagnetic characteristics.

techniques. We refer the readers to [27] for a detailed account
of various features and specifications of the architecture.

The key design feature of HBM that allows for parallel
access to channels facilitates coded memory storage and
retrieval. This can allow for various storage schemes where
the data and codes can be stored.

Remark 2: We note that the Hybrid Memory Cube (HMC)
architecture [28] is somewhat similar to the HBM architecture
discussed here. While our proposed approach could be used
in either system, this paper focuses on HBM because it has
more publicly available information and data for conducting
experiments. The HMC architecture has a provision where
the memory controller can be stored closer to the memory.
Additionally, it is also possible to integrate a small logic
function next to each bank, which interfaces with the memory
controller and performs certain preset arithmetic functions.
As shown in Figure 5, each data bank is now capable of
computing codes on the fly by accessing elements from
its memory and constructing arithmetic combinations with
its locally available logical block. This capability helps the
code designers to structure codes which can be constructed
dynamically to improve overall efficiency of the system. Local
arithmetic also allows designers to draw from similar results
and techniques from the field of distributed memory systems
for large data servers. The HMC architecture also allows for
inter-bank communication, where the data from one bank can
directly transfer to another bank without going through the
main controller. This can allow for optimal reorganization of
the memory to improve the access latency.

E. Related Work

Coding for distributed storage systems: In this paper, we
employ coding techniques to store information across multiple
memory banks. This is very similar to the application of

New architecture

Data

Bank 1

Data

Bank 2

Data

Bank 3

Data

Bank 5

Data

Bank 6

Data

Bank 7

Controller

Compute Function

Storage Function

Data

Bank 4

Data

Bank 8

Interface to
compute cores

Fig. 5: Block diagram description of new memory system
architectures with distributed memory controllers. This archi-
tecture includes a control logic closer to the data bank. This
control logic is capable of certain fixed computation that can
be exploited to reduce the access bandwidth between the bank
and the main controller.

coding to store data over distributed network of storage nodes
in large scale storage systems [29], [30], [31], [32], [33].
However, coding for memory systems comes with stringent
architectural constraints that need to be taken into account. A
memory controller should not be required to perform complex
computation during the accesses to the coded information.
Moreover, the coding for memory systems also needs to
support a significant portion of write requests during memory
accesses. Therefore, even though application of coding for
improved access latency has been previously explored in
distributed storage systems [24], [34], [25], [26], achieving the
same goal in the context of memory systems is a challenging
problem.
Coding for shared memory: In [35], [36], [37], the authors
develop a coded data storage architectures which mainly
applies to integrated memories in system-on-chip (SoC) sub-
systems. The proprietary memory design on SoC provides a lot
of flexibility to design and implement a complicated coding
scheme with less overhead. However, such architectures are
limited to a certain subset of products and do not scale to
ubiquitous DRAM memories deployed in most computing
systems today. The more prevalent DRAM memories are
manufactured by multiple vendors and are governed with
set industry standards and protocols. Interoperability with
commercial devices (and conformity to standards) requires
a new design for coded data storage, one which can be
implemented by enhancing the memory controller and enables
the benefits of a coded architecture. The coding schemes
described in [35], [36], [37] are suboptimal for the standard
memory systems including DRAM and HBM as their specific
architectures (cf. Section II-D) provide the opportunities for
further optimization.

In [19], [21], [22], the authors also explore coding theoretic
techniques in memory systems in order to emulate multi-port
memory using single-port memory banks. However, we note
that the overall solution proposed in this paper significantly

differs from this prior work in both the employed code design
and the accompanied memory controller architecture.

As mentioned earlier, there have been multiple efforts in
realizing multi-port memory functionality using various circuit
designs (e.g., see [18] and references therein). In this paper we
focus on a coding theoretic approach to explore an orthogonal
design space. We believe that the previously studied tech-
niques, e.g. pipelined, time-sharing access [18], may very well
be combined with our coding theoretic framework in order to
obtain a more comprehensive solution for high performance
memory systems.

III. CODED MEMORY SYSTEM

In this paper, we aim to extend the benefits of coding
theoretic techniques to dynamic random-access memory sys-
tems. In particular, we achieve this by storing the information
across single port memory banks in a redundant manner.
Traditionally, when multiple requests to a single bank are
issued by the cores, a stall occurs as only one address from
a single bank can be accessed at a time. As a result, the
cores must wait for the first request to the bank be served
before their other requests to the bank can be processed.
This is where a redundant storage space based on a carefully
designed coding scheme comes to the rescue. During a given
memory cycle, any data bank that is blocked/busy serving an
access can be viewed as a failure as far as other accesses are
concerned. Now, other accesses intended for this blocked bank
can be served by accessing the content stored in a group of
other memory banks. This way, redundant storage space allows
concurrent accesses to the same information and alleviates the
stalls that are unavoidable in a memory system comprised of
non-redundant storage space.

In this section, we describe our specific memory design in
detail. First, we present how to use Reed-Solomon codes to
introduce redundancy in the memory storage space. We then
discuss the memory controller, the other essential block of
our design. Our proposed controller exploits memory bank
redundancies to reduce the effect of concurrent read accesses
to the stored information. Additionally, the memory controller
also maintains consistency and validity of the stored data,
which arises due to the presence of write accesses.

A. Coded Multi-bank Storage Space

We rely on a systematic Reed-Solomon (RS) coding scheme
as a building block to design the storage space of our proposed
memory system. In particular, the storage space consists of
16 memory banks3 with 8 memory banks serving as the data
banks and the remaining 8 banks serving as the parity banks
(cf. Section II-B2). As detailed later in this subsection, the
parity banks are generated using a systematic (6, 4) RS code
which is defined over a finite field of size 28, denoted by
GF (28). In any codeword of this systematic (6, 4) RS code,

3We believe that a 16 bank design is quite reasonable given that the
next generation memory architectures feature many more memory banks than
current DRAM architectures.

it’s possible to generate all 4 associated message symbols
given any 4 symbols of the codeword.

Before we describe the process of generating the parity
blocks, we discuss the reasons behind employing RS codes as
opposed to other possible coding schemes. First, RS codes are
MDS codes (cf. Section II-B1), i.e., these codes are optimal
in terms of their storage efficiency. Additionally, decades of
study has lead to efficient encoding and decoding schemes for
RS codes. Crucially, these schemes can be easily hardcoded
into the memory controller in order to achieve good runtime
performance. Finally, RS codes have been proven to be useful
in previous work on distributed storage, both in theory and
in practice [38], [32], [10]. In fact, (14, 10)-RS code is used
in production at Facebook in their HDFS-RAID system [32].
This makes these codes a natural starting point for our dense
memory storage architecture.

We now describe the detailed design of the storage space of
our proposed memory system. Let the underlying systematic
(6, 4) RS code map 4 message symbols u, v, w, x ∈ GF (28)
to a codeword containing 6 symbols(

u, v, w, x, f(u, v, w, x), g(u, v, w, x)
)
∈ GF (28)6,

where f, g : GF (28)4 → GF (28) are two linear maps. We
arrange the information in 8 data banks B0, B1, . . . , B7 as
shown in Figure 6. The parity banks P0, P1, . . . , P7 then store
the parity symbol which are generated according to the (6, 4)
RS code described above4. In particular, the first two parity
banks P0 and P1 store the parity symbols that are functions of
the information stored in the first four data banks B0, B1, B2,
and B3. Note that this implies that the symbols stored on
the same row address of the six banks {B0, . . . , B3, P0, P1}
form codewords of the underlying (6, 4) RS code. Similarly,
the parity symbols generated from the remaining four data
banks B4, B5, B6, and B7 are stored in the parity banks P2
and P3.

In our design, we ensure that each data bank is part of
2 codewords of the (6, 4) RS code, which are formed by
disjoint sets of parity banks. This creates disjoint ways of
recovering the information stored in the same data bank. We
utilize the parity banks P4, P5, P6, and P7 to generate the
second codewords associated the data banks. In particular,
parity banks P3 and P4 store the parity symbols generated
from the information stored on the even numbered data banks
B0, B2, B4, and B6. Similarly, the parity banks P6 and P7
store the parity symbols generated from the odd numbered
data banks B1, B3, B5, and B7.

Remark 3: Note that the redundancy in the storage space
helps enable concurrent read accesses by treating the blocked
data banks as failures. For example, assume that B0 and
B1 are blocked due to some read accesses. Now, another
read access to B0 can be realized by using B2, B3, P0 =

4Recall the encoding process and associated notation defined in Sec-
tion II-B2. For example, the functions f and g are applied to the symbols
stores in a given row address of B0, B1, B2, and B3 to obtain the
symbols stored in the same row address of the parity banks f(0123) ,
f(B0, B1, B2, B3) and g(0123) , g(B0, B1, B2, B3), respectively.

Data
Banks

Parity
Banks

B1B0 B2 B3 B4 B5 B6 B7

f(0123) g(0123) g(4567)f(4567) f(0246) g(0246) g(1357)f(1357)

P0 P1 P2 P3 P4 P5 P6 P7

Fig. 6: Data storage layout for coded memory system

f(B0, B1, B2, B3), and P1 = g(B0, B1, B2, B3) to recover
the symbol in B0 required by the access. Similarly, consider
a different scenario, where B0 is busy serving a read access.
Now, another read access for the information stored in B0
can be served by reconstructing that information with the
help of three data banks B1, B2, B3, and one parity bank
P0 = f(B0, B1, B2, B3) or P1 = g(B0, B1, B2, B3).

B. Memory Controller Design

The proposed architecture of the memory controller consists
of a scheduler which converts memory access requests from
the cores into memory access patterns that are mapped to
different memory banks. The scheduler has three main com-
ponents: 1) reorder buffer, 2) read algorithm, and 3) write
algorithm. The reorder buffer stores the list of pending or
recently served access requests by the memory system. In
addition, the reorder buffer also keeps track of the status of
the data stored on memory banks as it gets stale (invalid) as
a result of write requests. The scheduler compares each read
and write request to the content of the reorder buffer in order
to decide how the request gets served by the read algorithm
and the write algorithm, respectively. Next, we describe each
of these three main components of the memory controller in
detail. Table I shows the behavior of our proposed memory
controller architecture on an example request pattern.

1) Reorder buffer: As mentioned earlier, all access requests
need to go through the reorder buffer. The reorder buffer stores
the data downloaded from the memory banks in order to serve
read access requests from the cores. Similarly, the reorder
buffer also stores the new data that arrives with write requests
and need to be written on the coded memory banks (after
generation of consistent parity data). In addition to storing
the actual data, the reorder buffer maintains metadata to keep
track of the rows of the memory banks that are present in the
reorder buffer and the validity of these rows across data banks
and parity banks. Each write request invalidates the content of
(some of) the data banks. The data on these banks (and on the
corresponding parity banks which depend on them) then needs
to be updated. The metadata of the reorder buffer is used to
ensure this consistency across the data and parity banks when
the memory controller maps a write request to be written on

the memory banks. The reorder buffer size is a key design
parameter which trades off faster access speeds for increased
overhead, as shown in Section IV.

For each row address in the memory banks, the reorder
buffer stores at most 1 entry along with the following 20 bits
of metadata (cf. Table I).

• Done: This bit indicates if this particular row address had
a write request associated with it in the past that has not
yet been written to the memory banks. If Done bit is set
to 1, this implies that this row address was affected by
the write requests and the content on the memory banks
need to be updated when this row is removed from the
metadata of the reorder buffer.

• R/W : This bit denotes the nature of the most recent
access request for the row address associated with the
entry in reorder buffer. R and W refers to the read request
and the write request, respectively.

• Dvalid: This bit indicates if the reorder buffer stores the
valid data for the corresponding row address in each of
the data banks. Dvalid bit is set to 1 when the reorder
buffer has the valid copies of the content for all the data
banks.

• Pvalid: This bit indicates if the reorder buffer stores the
valid data for the corresponding row address in each of
the parity banks. Pvalid bit is set to 1 when the reorder
buffer stores the valid copies of the data for all the parity
banks.

• DB0, . . . , DB7: Similar to the Dvalid bit, for 0 ≤ i ≤ 7,
DBi bit is set to 1 to denote that the reorder buffer stores
the valid data for the associated row address in the i-th
data bank Bi.

• PB0, . . . , PB7: Similar to the Pvalid bit, for 0 ≤ i ≤ 7,
PBi bit is set to 1 to indicate that the reorder buffer
stores the valid version of the content for the associated
row address in the i-th parity bank Pi.

Note that Dvalid and Pvalid are logical ANDs of DB0−DB7

and PB0 − PB7, respectively.
Remark 4: Even though the data stored in a particular row

in the memory banks might be invalid, the reorder buffer
may store its valid version which would lead to the Dvalid

ROW Done R/W Dvalid Pvalid DB0 DB1 DB2 · · · DB7 PB0 PB1 PB2 · · · PB7

t=1 0x2 0 R 0 0 1 1 0 0 0 0 0 0 0 0 Read B0 − B1

t=2 0x2 0 R 1 1 1 1 1 1 1 1 1 1 1 1 Read B0 − B7

t=3 0x2 0 W 0 0 0 1 1 1 1 0 0 0 0 0 Write B0

t=4 0x2 0 W 1 0 1 1 1 1 1 0 0 0 0 0
t=5 0x2 0 R 1 0 1 1 1 1 1 0 0 0 0 0 Read B4 − B6

t=6 0x2 1 R 1 1 1 1 1 1 1 1 1 1 1 1
t=7 0x2 1 R 1 1 1 1 1 1 1 1 1 1 1 1 Read B0 − B7

TABLE I: Example of a single entry 0x2 in the reorder buffer across time during a Read-Write-Read request pattern. At t=1,
there is a read from B0–B1, followed by a read at t = 2 from B0–B7 which includes both data and parity banks. A write
request to B0 occurs from t = 3 to t = 6, during which DB0 is updated, Dvalid is set to 1, bits for parities banks, i.e.,
PB0–PB7, are updated, Pvalid is set to 1, and Done is set to 1. Since data banks are valid after t = 4, a read from B4–B6
is served using only data banks at t = 5, which sets the R/W bit to R. A read from B0–B7 occurs at t = 7, which does not
change the state of the reorder buffer.

and/or Pvalid bits to be set. It’s the responsibility of the write
algorithm to transfer this valid data from the reorder buffer
to the memory banks when the corresponding row is evicted
from the reorder buffer.

Remark 5: Here, we note that the reorder buffer can also be
utilized to incorporate different priority levels among access
requests, if the memory systems is required to support multiple
access types with different priority levels.

2) Read algorithm: For a given state of the reorder buffer
and the set of pending read requests from the cores, the main
purpose of the read algorithm is to maximize the number of
read requests that can be served in a given memory cycle.
This is accomplished by utilizing the redundant parity banks
in an efficient manner without increasing the algorithm’s
overall complexity. Note that in our coded memory design
(cf. Section III-A), a parity bank is useful during data access
only if some of the corresponding data banks are also accessed.
In particular, assuming that all the relevant parity banks are
valid, there are two possible ways of serving a read request
by employing the parity banks: 1) content of 2 data banks
and 2 parity banks is utilized; and 2) content of 3 data banks
and 1 parity bank is utilized (cf. Remark 3). In every cycle,
the scheduler picks pending read requests in order and tries
to serve them according to the read algorithm described in
Figure 7. In addition to this, whenever all but 1 data bank is
present in the buffer, that data bank is automatically read from
memory and the algorithm proceeds with Dvalid set to 1.

3) Write algorithm: Note that each write request is accom-
panied by the content that needs to be updated in (some of)
the data banks. However, in order to have consistency across
all the memory banks, every update in the data banks should
be reflected in the associated parity banks as well. The write
algorithm ensures that the reorder buffer stores consistent and
valid data for each row address available in the buffer. The
write algorithm achieves this task by following the procedure
described in Figure 8. In particular, the write algorithm picks
the pending write access requests from the core in order. The
algorithm then determines if the associated row address is
present in the reorder buffer. If it is not present, it makes
an entry for the row in the reorder buffer.

Once the reorder buffer has the entry for the row address,
the write algorithm ensures that the buffer stores the valid

✦ If :
‣ Serve the request from memory

banks while trying to utilize the
idle parity banks.

‣ Update the metadata of the
reorder buffer accordingly.

Yes

No

Start

If
the row address

is in the
reorder buffer?

 If
 ? Dvalid

 If
 ? Pvalid

Finish

✦ Serve the request from memory
banks.
‣ If idle, use the parity banks.

✦ Create an entry with downloaded
data in the reorder buffer.

Yes

Yes

No

No

✦ Serve the request from the content
for data banks in the reorder buffer.

✦ If :
‣ If parity banks are idle, read

content from the associated row
in the parity banks to reorder
buffer and set .

Done = 0

Pvalid = 1

✦ If :
‣ Use the content for the parity

banks in reorder buffer and
access the required data banks.

Done = 0

Done = 0

Fig. 7: Description of the read algorithm.

content for the row address. This involves 1) copying the
content received with the write request to update the con-
tent already available in the buffer from the data banks; 2)
regenerating the updated content for the parity banks; and 3)
updating the metadata of reorder buffer by modifying the entry
corresponding to the underlying row address. Once the reorder
buffer has valid and consistent data for a given row address,
Done is set to 1.

Table I illustrates these steps for an example write request.
At t = 3, the write algorithm starts processing a write
request for data bank B0 by setting the R/W bit with the
associated address to W . It also sets the Dvalid, DB0, Pvalid

and PB0 − PB7 to zero. In the subsequent steps, the write
algorithm updates the content for data bank B0 in the buffer by
replacing it with the content received with the write request. It
then updates DB0 and Dvalid by setting those to 1. If Dvalid is

✦ Update the content of reorder
buffer with that received with the
write request.

✦ Set the appropriate bits and
(if possible) to 1.

DB
Dvalid

Start

If
the row

address is in the
 reorder buffer?

Finish

✦ Create an entry for the row in
the reorder buffer.

Yes

Yes

No

No

✦ Set to 1.Done

✦ Set bit to .R/W W
✦ Set , appropriate bits,

 and to 0.Pvalid PB0 � PB7

Dvalid DB

 If
 ?Dvalid

✦ Set and to 1.Pvalid PB0 � PB7

✦ Generate valid data for parity banks.

Fig. 8: Description of the write algorithm.

0, the reorder buffer entry remains in the buffer until all data
banks are updated. Once Dvalid is indeed 1, then the write
algorithm generates the new content for the parity banks and
sets Pvalid and PB0 − PB7 to 1. At this point, it also sets
Done to 1.

Once the Done bit is set to 1, the write algorithm schedules
the updated row to be written to the memory banks. Once
the write is successfully performed on the memory banks, the
entry in the reorder buffer is updated by setting R/W bit to
R and Done bit to 0. Here, we note that the R/W bit can
get modified by a subsequent read request (as illustrated in
Table I). However, the Done = 1 bit reminds the scheduler
that the memory banks have not yet been updated.

4) Writeback algorithm: The scheduler uses the limited
size reorder buffer to fetch data from the bank rows and to
perform read, write and code operations. In the process, the
scheduler ensures that every time the reorder buffer reaches
near its capacity, it clears up entries based on the following
set of rules: Rule 1 is to pop out the oldest entry in the reorder
buffer. Rule 2 is to ensure that the evicted row from the reorder
buffer matches the data in the memory bank. This is ensured by
using the Done bit in the reorder buffer. If a write instruction
modifies a data bank entry, the scheduler reconstructs the code
and makes Done = 1.

IV. EXPERIMENTS

In this section, we describe our HBM implementation and
Ramulator simulations on several SPEC2006 benchmarks.

A. HBM Implementation

Our coding scheme is based on a single 16-bank channel of
HBM DRAM operating in Pseudo Channel Mode (8 banks per
pseudo channel). To fit the layout of Figure 6 and Section III,
Pseudo Channel 0 is used for data banks and Pseudo Channel
1 is used for parity banks. Wherever possible, we try to
interleave the banks. This ensures that most large, linear
accesses will be spread across multiple banks with reduced
contention.

In this mode, the 128-bit data bus is split into 2 individual
64-bit segments. However, the pseudo channels share the same
address and command bus: commands and addresses may be
sent to one pseudo channel or the other, but not to both.
They also decode and execute commands individually. For
commands that are common to both pseudo channels, strict
timing conditions must be met to avoid conflicts. Table II
describes additional design details.

Memory overhead Storage of parity is limited to 50% of
the overall memory.

Memory Banks 8 Data banks, 8 parity banks
Cache Line Size 128/256 bytes size

Element Size Each element is 256 bytes
Number of Cores 6-8 cores for Wireless SoC platform

Access Rate 1GHz memory speed
Burst Length 4 (256-bit transfer in four 64-bit bursts)

TABLE II: Summary table of design parameters.

Remark 6: Figure 9 describes the address mapping for each
channel. The least significant “OFFSET” bits of the address
signify the byte level addressing of the data. The 6 most
significant “CA” bits indicate column address, the next 14
“RA” bits indicate row address, the 3 “BA” bits decide the
bank, and the remaining 3 “CH” bits specify the channel.

CA5:CA0 RA13:RA0 BA2:BA0 CH2:CH0 OFFSET3:OFFSET0

Fig. 9: Address mapping for channels.

Fig. 10: Single-core CPU Simulation.

Fig. 11: Multi-core CPU Simulation.

B. Methodology

Our code design was implemented on the Ramulator plat-
form [7] to evaluate memory access improvements compared
to a baseline, uncoded memory layout. This platform allows
for excitation of the memory scheduler module with stan-
dard benchmarks that represent differentiated and distributed
computational and memory access patterns. Experiments were
conducted on a single-processor system using the SPEC2006
benchmark [39], and on a 6-core and 8-core systems using
application traces from an off-the-shelf wireless SoC.

The single-core architecture for the SPEC2006 benchmark
is shown in Figure 10, and Figure 11 shows the architecture
for the 6-core processor simulation. The instruction traces are
mapped to memory requests, which are pushed to a request
queue and sent to the memory system’s reorder buffer. For
each request, the corresponding cycle number, read or write
access, and address is stored. After the steps outlined in
Section III-B1, the bank requests are generated and sent to
the HBM memory controller. The corresponding data is sent
back to the reorder buffer or to the CPU via the data bus.
Since the simulator is cycle accurate, the 6-core processor
simulation may pop multiple requests from the reset queue
at the beginning of each cycle.

C. Cycle Simulation Results

Next, we present the results of SPEC2006 simulation cycles
on the proposed coded model and a baseline model. The
goal is to simulate the benefits of improved read accesses,
which bounds the amount of improvement we can expect in
a full hardware implementation. Encoding and decoding can
be done offline in parallel and is therefore ignored. We also
consider the delays of parity bank writebacks to be negligible.
The coded model was evaluated with the following reorder
buffer sizes: {8, 16, 32, 64, 128,∞}. For larger reorder buffer
size, the increased memory overhead leads faster accesses.
Thus, the infinite reorder buffer simulation further bounds the
performance improvements we expect in practice because no
rows are evicted.

Figure 12 compares our memory scheme’s performance
improvements across different benchmarks. For cases such

as omnetpp and sjeng, our scheme improves over the
uncoded baseline and continues to improve as the buffer
size increases. We also see that for the mcf benchmark, our
scheme reduces the read request latency and also reduces the
number of CPU cycles to approximately 30% of the uncoded
case. This benchmark has the most significant improvements
because most of its instructions are memory read requests.
However, mcf hits a performance bottleneck and does not
continue improving when the reorder buffer size exceeds 64.
This suggests that the mcf memory pattern is clustered such
that all the memory requests can be stored in a reorder buffer
of this size. The mcf benchmark is made up of a program
that implements network simplex code that often works on
large chunk of data intermittently [40]. The speed of access
(subsequently the speed of the program) in this case improves
significantly with the coded memory access.

The mlic benchmark shows reduction to about 40% of
the uncoded case for any buffer size. This variety of results
suggests that additional improvements can be achieved by
combining our scheme with other approaches.

For the application traces in Figure 13, the performance
improvements are modest compared to those of the SPEC2006
benchmark. Our scheme hits a performance bottleneck with
a reorder buffer size of only 16 bits. We attribute this to
the fact that memory patterns for the application traces are
clustered more closely. Again, additional techniques must be
used to exceed this observed performance barrier.

V. CONCLUSION

This paper proposes a coded memory system that is
amenable to multi-bank DRAM architectures such as HBM.
Our Reed-Solomon based coding scheme reduces bank con-
flicts by creating many redundant ways to access a requested
data element. This is achieved by assigning some banks to
be dedicated parity banks. A memory scheduler then decides
which frequently-used data elements should be stored in these
parity banks. Simulations on the SPEC2006 benchmarks show
significant reduction in CPU latency when the scheduler’s
reorder buffer has both finite and infinite size.

One potential source of improvement is the addition of a
memory prefetching unit, similar to an instruction or cache
prefetching unit, which can detect linear access patterns to
memory regions. For example, if a sequence of memory
accesses is issued in increasing order spaced one byte apart,
then a prefetching unit would predict the next access to be one
byte past the previous one. Prefetching-based memory designs
have been studied only in the context of uncoded memory
systems [41], [42], [43], [44]. We can augment our scheme
by fetching a predicted address from a parity bank during
accesses for which it remains valid but idle. Then for future
memory accesses, the controller can check the prefetched data
and attempt to complete the request using current accesses and
prefetched data. This means that previously occupied banks
are available to serve more accesses per cycle. As memory

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

GemsFDTD	 omnetpp	 sjeng	 xalancbmk	 cactusADM	 leslie3d	 soplex	 mcf	 sphinx3	 gobmk	 gcc	 astar	 zeusmp	 h264ref	 lbm	 libquantum	 gromacs	 hmmer	 milc	 bzip2	 wrf	 dealII	 namd	

Coded	8	 Coded	16	 Coded	32	 Coded	64	 Coded	128	 Coded	Inf	 Uncoded	

Fig. 12: Simulated Number of CPU cycles: Baseline HBM versus Coded HBM across different benchmarks (with reorder
buffer size of {8, 16, 32, 64, 128,∞}).

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Core	0	 Core	1	 Core	2	 Core	3	 Core	4	 Core	5	

SoC	1	Uncoded	 SoC	1	Coded	16	 SoC	2	Uncoded	 SoC	2	Coded	16	

Fig. 13: Simulated Number of active DRAM cycles: Baseline HBM versus Coded HBM across application-driven wireless
SoC traces (reorder buffer size 16)

0 500 1000 1500 2000 2500 3000

Time in ns

007a1200

0081b320

00895440

0090f560

00989680

00a037a0

00a7d8c0

00af79e0

00b71b00

00bebc20

00c65d40

A
d
d
re

s
s
 A

c
c
e
s
s
 V

a
lu

e

Address Access to bank

bank 0

bank 1

bank 2

bank 3

bank 4

bank 5

bank 6

bank 7

500 1000 1500 2000 2500
Time in ns

007a1200

0081b320

00895440

0090f560

00989680

00a037a0

00a7d8c0

00af79e0

00b71b00

00bebc20

00c65d40

Ad
dr

es
s

Ac
ce

ss
 V

al
ue

Address Access to bank

bank 0
bank 1
bank 2
bank 3
bank 4
bank 5
bank 6
bank 7

Fig. 14: Memory bank accesses across a 3 µs trace, which suggest linear access patterns. The right figure is an enlarged version
of the top half of the left figure.

accesses wait to be issued in the bank queues, they can si-
multaneously be checked with prefetched data. Thus, no extra
latency is anticipated by the addition of a memory prefetching
unit. Figure 14 shows two plots of memory accesses for several
banks across time. Both figures suggest linear access pat-
terns and thus larger performance improvements when coding
caching is combined with prefetching for this application.

REFERENCES

[1] G. E. Moore, “No exponential is forever: but ”forever” can be delayed!
[semiconductor industry],” in Proceedings of IEEE International Solid-
State Circuits Conference (ISSCC), pp. 20–23, Feb 2003.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth
Edition: A Quantitative Approach. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2006.

[3] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” SIGARCH Comput. Archit. News, vol. 23, pp. 20–24,
Mar. 1995.

[4] W. Zhao and Y. Cao, “New generation of predictive technology model
for sub-45 nm early design exploration,” IEEE Transactions on Electron
Devices, vol. 53, no. 11, pp. 2816–2823, 2006.

[5] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson,
and J. D. Owens, “Programmable stream processors,” Computer, vol. 36,
no. 8, pp. 54–62, 2003.

[6] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent ram,”
IEEE micro, vol. 17, no. 2, pp. 34–44, 1997.

[7] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
DRAM simulator,” IEEE Computer Architecture Letters, vol. 15, pp. 45–
49, Jan 2016.

[8] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam: North-Holland, 1983.

[9] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the society for industrial and applied mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[10] K. Shanmugam, D. S. Papailiopoulos, A. G. Dimakis, and G. Caire,
“A repair framework for scalar mds codes,” IEEE Journal on Selected
Areas in Communications, vol. 32, pp. 998–1007, May 2014.

[11] V. Guruswami and M. Wootters, “Repairing reed-solomon codes,” in
Proc. of 48th Annual ACM Symposium on Theory of Computing (STOC),
(New York, NY, USA), pp. 216–226, ACM, 2016.

[12] I. Corp., “Intel xeon processor e7 family: Reliability, availability, and
serviceability,” 2011.

[13] J. Kim, M. Sullivan, and M. Erez, “Bamboo ECC: Strong, safe, and
flexible codes for reliable computer memory,” in Proc. of 21st IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pp. 101–112, Feb 2015.

[14] I. B. M. C. (IBM), “Chipkill memory,” in http://www-
05.ibm.com/hu/termekismertetok/xseries/dn/chipkill.pdf, Tech. Rep.,
2012.

[15] T. Suzuki, H. Yamauchi, Y. Yamagami, K. Satomi, and H. Akamatsu,
“A stable 2-port sram cell design against simultaneously read/write-
disturbed accesses,” IEEE Journal of Solid-State Circuits, vol. 43,
pp. 2109–2119, Sept 2008.

[16] D. P. Wang, H. J. Lin, C. T. Chuang, and W. Hwang, “Low-power
multiport sram with cross-point write word-lines, shared write bit-lines,
and shared write row-access transistors,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 61, pp. 188–192, March 2014.

[17] D. J. Auerbach, T. C. Chen, and W. J. Paul, “High-performance multiple
port memory,” Aug 1988.

[18] K. Endo, T. Matsumura, and J. Yamada, “Pipelined, time-sharing access
technique for an integrated multiport memory,” IEEE Journal of Solid-
State Circuits, vol. 26, pp. 549–554, Apr 1991.

[19] R. L. Rivest and L. A. Glasser, “A fast multiport memory based on
single-port memory cells,” Tech. Rep. MIT/LCS/TM-455, Massachusetts
Inst. of Tech. Cambridge Lab. for Computer Science, 1991.

[20] B. A. Chappell, T. I. Chappell, M. K. Ebcioglu, and S. E. Schuster,
“Virtual multi-port ram,” Apr 1993.

[21] S. Iyer and S.-T. Chuang, “System and method for storing multiple
copies of data in a high speed memory system,” Jan 2015.

[22] S. Iyer and S.-T. Chuang, “System and method for storing data in
a virtualized high speed memory system with an integrated memory
mapping table,” Aug 2013.

[23] H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication: A
quantitative comparison,” in Revised Papers from the First International
Workshop on Peer-to-Peer Systems, IPTPS ’01, pp. 328–338, 2002.

[24] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and
their applications,” in Proc. of thirty-sixth annual ACM symposium on
Theory of computing (STOC), pp. 262–271, 2004.

[25] A. S. Rawat, Z. Song, A. G. Dimakis, and A. Gal, “Batch codes through
dense graphs without short cycles,” IEEE Transactions on Information
Theory, vol. 62, pp. 1592–1604, April 2016.

[26] Z. Wang, H. M. Kiah, Y. Cassuto, and J. Bruck, “Switch codes: Codes for
fully parallel reconstruction,” IEEE Transactions on Information Theory,
vol. 63, pp. 2061–2075, April 2017.

[27] J. Kim and Y. Kim, “Hbm: Memory solution for bandwidth-hungry
processors,” in Hot Chips 26 Symposium (HCS), 2014 IEEE, pp. 1–24,
IEEE, 2014.

[28] J. T. Pawlowski, “Hybrid memory cube (HMC),” in Proceedings of IEEE
Hot Chips 23 Symposium (HCS), pp. 1–24, Aug 2011.

[29] O. Khan, R. Burns, J. Park, and C. Huang, “In search of I/O-optimal
recovery from disk failures,” in Proc. of 3rd USENIX Conference on Hot
Topics in Storage and File Systems (HotStorage), pp. 6–6, June 2011.

[30] A. G. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Transactions on
Information Theory, vol. 56, pp. 4539–4551, Sept 2010.

[31] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin in Proc. of 2012 USENIX Conference on Annual Technical
Conference, USENIX ATC’12, pp. 15–26, USENIX Association, 2012.

[32] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing elephants: Novel erasure
codes for big data,” Proc. of 39th International Conference on Very
Large Data Bases (VLDB), vol. 6, pp. 325–336, June 2013.

[33] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ram-
chandran, “A ”hitchhiker’s” guide to fast and efficient data reconstruction
in erasure-coded data centers,” in Proc. of the 2014 ACM Conference
on SIGCOMM, pp. 331–342, Aug. 2014.

[34] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath,
“Locality and availability in distributed storage,” IEEE Transactions on
Information Theory, vol. 62, pp. 4481–4493, Aug 2016.

[35] H. Luan, A. Gatherer, S. Vishwanath, C. Hunger, and H. Jain, “Dynamic
coding algorithm for intelligent coded memory system,” Feb. 2 2017.
US Patent App. 14/811,357.

[36] H. Luan, A. Gatherer, S. Vishwanath, C. Hunger, and H. Jain, “Intelligent
code apparatus, method, and computer program for memory,” Feb. 2
2017. US Patent App. 14/811,763.

[37] H. Luan, A. Gatherer, S. Vishwanath, C. Hunger, and H. Jain, “Intelligent
memory architecture for increased efficiency,” Feb. 2 2017. US Patent
App. 14/810,895.

[38] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure coding in windows azure storage,” in Proc.
of USENIX Annual Technical Conference (USENIX ATC), pp. 15–26,
2012.

[39] J. Henning, “SPEC CPU2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, pp. 1–17, Sept 2006.

[40] S. 2006, “429.mcf - spec cpu2006 benchmark description,”
[41] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson,

and Z. Chishti, “Path confidence based lookahead prefetching,” in
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 1–12, Oct 2016.

[42] D. Kadjo, J. Kim, P. Sharma, R. Panda, P. Gratz, and D. Jimenez, “B-
fetch: Branch prediction directed prefetching for chip-multiprocessors,”
in Proceedings of 47th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 623–634, Dec 2014.

[43] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address pat-
terns,” in 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 141–152, Dec 2015.

[44] A. Jain and C. Lin, “Linearizing irregular memory accesses for im-
proved correlated prefetching,” in Proc. of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, (New York, NY, USA),
pp. 247–259, ACM, 2013.

	Introduction
	Background
	Multi-core Setup and Bank Conflicts
	Coding Techniques: Preliminaries
	Block Codes
	Encoding Memory Banks

	Emulating Multi-port Memories
	High Bandwidth Memory
	Related Work

	CODED MEMORY SYSTEM
	Coded Multi-bank Storage Space
	Memory Controller Design
	Reorder buffer
	Read algorithm
	Write algorithm
	Writeback algorithm

	Experiments
	HBM Implementation
	Methodology
	Cycle Simulation Results

	Conclusion
	References

