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Abstract

We study the problem of recovering a structured signal x0 from high-dimensional measurements of
the form y = f(aTx0) for some nonlinear function f . When the measurement vector a is iid Gaussian,
Brillinger observed in his 1982 paper that µ` ·x0 = minx E(y−〈a,x〉)2, where µ` = Eγ [γf(γ)] with γ
being a standard Gaussian random variable. Based on this simple observation, he showed that, in the
classical statistical setting, the least-squares method is consistent. More recently, Plan & Vershynin
extended this result to the high-dimensional setting and derived error bounds for the generalized
Lasso. Unfortunately, both least-squares and the Lasso fail to recover x0 when µ` = 0. For example,
this includes all even link functions. We resolve this issue by proposing and analyzing an appropriate
generic semidefinite-optimization based method. In a nutshell, our idea is to treat such link functions
as if they were linear in a lifted space of higher-dimension. An appealing feature of our error analysis
is that it captures the effect of the nonlinearity in a few simple summary parameters, which can be
particularly useful in system design.

1 Introduction

1.1 Motivation

We consider the problem of estimating an unknown signal vector x0 ∈ Rn from a vector y = (y1, y2, . . . , ym)T

of m generalized linear measurements1 taking the following form:

yi = fi(a
T
i x0), i = 1, 2, . . . ,m. (1)

Here, each ai ∈ Rm represents a (known) measurement vector, the fi’s are independent copies of a
(possibly random) link function f . The model (1) includes many commonly encountered instances of
signal recovery problems as special cases. A few examples include: (a) fi(x) = x + zi, with say zi
being normally distributed, for standard linear regression setup with gaussian noise; (b) f(x) = sign(x)
(or, sign(x + zi)), for 1-bit quantized (noisy) measurements; (c) f(x) = |x|2 + zi, for quadratic (noisy)
measurements, and so on. Recovery problems from quadratic measurements arise in a variety of problems
in optics and are referred to as phase-retrieval (PR) problems. In fact, in various imaging applications,
a physical model that more accurately describes the variation in the number of photons detected by the
optical sensor is as follows: yi ∼ Poisson(|aTi x0|2), i = 1, 2, . . . ,m,. To allow for statistical models of the
measurements of this latter type, we also consider a slight generalization of (1) where the measurements

1In the statistics and econometrics literature, the measurement model in (1) is popular under the name single-index
model ; it can also be regarded as a special case of what is known as sufficient dimension reduction problem.
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are drawn independently according to a conditional distribution of a (known) probability density function
as follows:

yi ∼ p(y | aTi x0), i = 1, 2, . . . ,m. (2)

Our focus is on the high-dimensional regime, where both the number of measurements m and the
dimension of the unknown signal n are large. Also, we aim to exploit a-priori available structural informa-
tion about the unknown signal x0. To exploit this information it is typical to associate with the structure
of x0 a properly chosen function R : Rn → R, which we refer to as the regularizer. Of particular interest
are convex and non-smooth regularizers, such as the `1-norm for sparse signals, the `1,2 for group-sparse
ones, and so on.

1.2 Prior art

In the simplest case where the link function is linear, i.e., fi(x) = x+ zi, perhaps the most popular way
of estimating x0 is via solving the generalized Lasso:

x̂ := arg min
x

m∑
i=1

(yi − aTi x0)2 s.t. x ∈ KR. (3)

Here, KR ⊂ Rn is a convex set that encodes the available information about x0. For instance,

KR = {x ∈ Rn | R(x) ≤ K},

for some (tuning) parameter K > 0. The generalized Lasso enjoys much success in practice and comes
with provable performance guarantees under general assumptions on the choice of the regularizer function
R and on the measurement vectors.

The Lasso objective is by nature tailored to linear measurement models, but one can always employ
it as a candidate recovery algorithm even in the case of non-linear observations yi = f(aTi x0) with f
being a non-linear function. Naturally, this approach gives rise to the following question:

When (if ever) is the solution x̂ of the Lasso still a good estimate of x0?

This question has been recently addressed in a quantitative way by Plan & Vershynin, under the
generic assumption that the measurement vectors are independent Gaussians [1]. Naturally, the answer
depends both on: (i) the specific non-linearity f in (1); (ii) on the structure of x0 and the choice of the
regularizer. It turns out that the dependence on these factors can be summarized in terms of a few key
parameters that are easy-to-compute. In particular, the effect of the nonlinearity is entirely captured by
the following two parameters:

µ` := E[γf(γ)], and τ2
` := E[(f(γ)− µγ)2], for γ ∼ N (0, 1), (4)

where the expectations are over γ and the (possibly) random link function f . With these and assuming2

‖x0‖2 = 1 the error performance of the Lasso, as derived in [1, Thm. 1.4], is as follows.
For illustration, let us focus on the case of sparse recovery: suppose x0 is k-sparse and x̂ is the solution

to (3) with `1-regularization Then, if m & k log(n/k) and n is large enough, then with high probability3:

‖x̂− µ` · x0‖2 . τ` ·
√
k log(n/k)√

m
. (5)

2Information about the magnitude of x0 might be in general lost because of the non-linearity. To keep things general,
we are interested in an estimate that has high correlation with the true signal (also called weak recovery, e.g.[2]). Hence,
here the assumption ‖x0‖2 = 1 is made without loss of generality.

3 Here and in the rest of the paper, a statement is said to hold with high probability if it holds with probability at least
0.99 (say). Also, the symbol “.” is used to hide universal constants (in particular ones that do not depend on f).
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The fact that just µ` and τ` entirely capture the effect of the nonlinearity f can be particularly
useful. This is the case in systems where certain parameters of f can be directly designed (e.g., think
of quantized measurements where one chooses the levels and thresholds of quantization) [3]. But also,
when f is entirely determined by nature, one can use (5) to design a pre-processing function h such that
feeding zi = h(yi) to the Lasso reduces the error. In both cases, according to (5), the optimal design is
the one that minimizes the effective noise parameter τ2

` /µ
2
` ; see also [3].

What if the Lasso fails? The shortcoming of (5), or rather of the lasso estimator itself, is that it
obviously fails to produce a good estimate whenever µ` = 0. For example, this is the case under quadratic
measurements, since µ` = E[γ3] = 0. But, it also happens for all even link functions. In this paper, we
provide an affirmative answer to the following natural questions:

Is there a generic convex program that can recover structured signals from even non-linear
measurements? And if so, can we quantify its error performance?

The term generic above refers to a method that can adapt to different nonlinearities with minimal changes,
such as appropriate tuning of involved regularization parameters.

In a nutshell, our idea is as follows. Rather than pretending that f is linear (as the Lasso does),
which can be a bad approximation for (say) even link functions, we first lift the measurements to a
higher-dimensional space and then we perform the linear approximation at the new space.

1.3 Contribution

When measurements are quadratic we can apply a lifting method that effectively makes the measurements
linear in a higher-dimensional space. Observe that,

yi = (aTi x0)2 + zi = tr(aia
T
i · x0x

T
0 ) +zi. (6)

Thus, the measurements are linear functions of the rank-one matrix X0 = x0x
T
0 ∈ Rn×n:

yi = tr(aia
T
i ·X0) +zi.

We can now attempt to reconstruct the unknown matrix X0 by searching for a positive-semidefinite and
low-rank matrix X that minimizes the residual between yi and tr(aia

T
i ·X). Further replacing the rank

constraint with trace constraint, we arrive at the following convex method:

X̂ = arg min
X�0

m∑
i=1

(yi − tr(aia
T
i ·X))2 + λ · tr(X), (7)

where λ > 0 is a regularization parameter. Then, return the leading eigenvector of X̂ as a final estimate
for x0. Such formulations of the PR problem that are based on semidefinite programming relaxation
are by now well studied in the literature, e.g., [4, 5, 6, 7]. They often go by the name “PhaseLift” that
was coined in [4]. PhaseLift in (7) can be naturally adapted to account for a-priori available structural
information on x0. For instance, if x0 is k-sparse, then X0 is k2-sparse and one further constraints the
feasible set in (7) such that X ∈ K`1 := {W | ‖W‖1 ≤ K}, where K > 0 is a regularization parameter
and ‖W‖1 =

∑n
i=1

∑n
j=1 |Wij |.

PhaseLift beyond quadratics. In this paper, we go beyond the quadratic measurement model (6).
Our goal is to obtain an estimate of x0 from (1). In order to do this, we combine two tricks that we have
already seen. First, we lift to a higher-dimensional space. In contrast to (6) where the lifted measurements
are linear in the new space, this is of course not true in general. Then, we borrow the idea of [1]: we just
pretend that the measurements are linear and use one of the already available recovery algorithms for
linear problems. We accompany the methodology with guarantees similar in nature to [1] by quantifying
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the recovery performance as a function of the specific nonlinearity and of the signal structure. Our goal

is to obtain estimate x̂, with high correlation value: x̂Tx0

‖x0‖2‖x̂‖2 . We assume onwards that ‖x0‖2 = 1 and

that measurement vectors ai are standard (real) Gaussian.
The new algorithm for nonlinear measurements is efficient for link functions f for which the following

parameter is nonzero:

µq :=
1

2
E[(γ2 − 1)f(γ)], for γ ∼ N (0, 1). (8)

By simple integration by parts, note that this is equivalent to µq := 1
2E[f ′′(γ)] for two-times differentiable

functions. For example, µq = 1 > 0 for quadratic measurements. Applying the lifting trick as previously
described, instead of directly searching for x0 in the natural domain, we search for the rank-1 matrix
X0 = x0x

T
0 in the lifted domain. For this task, we solve the following semidefinite optimization program:

X̂ = arg min
X�0

m∑
i=1

(yi − tr(aia
T
i ·X))2 s.t. tr(X) = µq and X ∈ KR. (9)

Finally, we return the leading eigenvector of X̂ as an estimate of x0. We prove guarantees on the
performance of (9) similar in nature to (5). In particular, the error bounds summarize both the problem
geometry and the specific nonlinearity in (separate) summary parameters that are easy to compute. For
example, for sparse recovery of a k-sparse signal we show the following about (9) with `1-regularization.
If m & k2 log(n/k) and n sufficiently large then it holds with high probability that

‖X̂ − µqX0‖F . τq ·
k log(n/k)√

m
, (10)

where the parameter τq is defined as follows for γ ∼ N (0, 1):

τ2
q := E

[(
f(γ)− µ · γ2

)2]
. (11)

Observe the resemblance between (5) and our result in (9). On the one hand, in terms of sample
complexity, (8) pays a penalty of O

(
k2 log(n/k)

)
rather than O (k log(n/k)), but this gap also appears

with currently known algorithms for even just quadratic measurements (e.g., [8]). On the other hand,
the Lasso-related parameters µ` and τ` in (4) are replaced by the new parameters µq and τq, respectively.
Hence, just like it is the case with (5), our result suggests means of optimal design of either f or a
pre-processing function h.

Remarks. We note that the program in (9) is a variant of the PhaseLift program in (7). Thus, for
convenience, we henceforth refer to the method in (9) as PhaseLift. We further note that the PhaseLift
(9) is not entirely agnostic to the link function f , since it requires knowledge of the parameter µq.
However, it is generic in the sense that no other modifications are needed for different f ’s aside from
adjusting the value of the trace constraint. In particular, the same solver can be used to obtain X̂
for different link functions. Similar to the Lasso in (3) the constraint X ∈ KR is meant to promote
structural information on x0. Moreover, we remark the following property regarding µq. In the common
case of additive independent noise to a deterministic link function f (i.e., yi = f(aTi x0) + zi with zi
independent of ai,x0), computing µq (consequently, tuning of PhaseLift (9)) does not require knowledge
of the statistics of the noise since, 2µq = E[(γ2 − 1)(f(γ) + z)] = E[(γ2 − 1)f(γ)].

In order to motivate the trace constraint in (7), recall the assumption that ‖x0‖2 = 1, which is
equivalent to tr(X0) = 1. Also, observe that for quadratic measurements, µq = 1; thus, the trace
constraint becomes tr(X) = 1 = tr(X0). Inherent in the formulation of (8) is the condition µq > 0 (since,
X � 0 implies that tr(X) ≥ 0). The method returns a trivial non-informative estimate X = 0, when
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µq = 0. On the other hand, if µq < 0, then the same method works only by replacing the constraint
X � 0 with X � 0.

It is easy to see that for odd link functions µq = 0, in which case the PhaseLift algorithm in (9)
fails. Of course, for such functions one may use the Lasso. On the other hand, the Lasso fails for even
functions and the PhaseLift can be used instead. For other nonlinearities, such as ReLU(x) both the
Lasso and PhaseLift are applicable. Of course, the latter is computationally heavier. However, it remains
an interesting question which one is statistically favorable, or, if some natural combination of the two
methods can achieve the best of both worlds.

1.4 Relevant literature and outlook

Over the last decade or so, with the advent of compressed sensing theory, there has been significant
progress related to recovery of structured signals from high-dimensional measurements, both in theory
and in applications. The majority of the works assume a (noisy) linear measurement model and a recovery
method that solves a convex program, which minimizes a weighted combination of a loss function and
a (typically non-smooth) regularizer. The prototypical example of this approach is sparse recovery with
`1-regularized least squares (aka, Lasso). Other notable examples include low-rank matrix recovery with
nuclear-norm minimization, group-sparse recovery with `1/2-minimization, and so on. By now, perfor-
mance guarantees for these algorithms are available for wide range of assumptions on the distribution of
the measurement matrix (Gaussian, sub-Gaussian, random Fourier, etc,) [9]. Specifically for iid Gaussian
matrices, there is a complete and precise theory under general assumptions on the noise distribution, the
signal-structure, the loss-function and the regularizer (see references in [10, Sec. 7]).

Extensions of those results to nonlinear link functions, have been only more recently considered in the
high-dimensional setting. The core observation goes back to the work by Brillinger [11], who observed that
for Gaussian measurement vectors it holds µ`x0 = minx E(f(〈a,x0〉)− 〈a,x〉)2. After Brillinger’s result,
Li and Duan [12] generalized the result to elliptically symmetric distributions. Plan and Vershynin [1]
(see also [13]) extended Birllinger’s result to the high-dimensional setting by considering structured signal
recovery with the constrained Lasso. Thrampoulidis et al. further extend the result to the regularized
Lasso in [14], where they pinpoint the exact constants in the analysis and use the results to design
optimal quantization schemes. More recent works extend the results to other loss-functions beyond least
squares [15], to elliptically symmetric distributions [16], to projected gradient-descent [17] and to signal-
demixing applications [18]. See also [19] for use of these ideas to obtain computational speedups compared
to maximum-likelihood estimation. Finally, very recently [20] have appropriately modified and extended
Brillinger’s original observation to sub-Gaussian vectors. Based on that, they propose and analyze generic
convex solvers for recovery from nonlinear link function with sub-Gaussian design.

Unfortunately, all these works starting with the original result by Brillinger assume that the link
function satisfies µ` 6= 0. In particular, this excludes all even functions. Instead, our method and analysis
works for these; and more generally for link functions satisfying µq 6= 0. In that sense, this paper is a
direct counterpart of [1] for “even-like” nonlinearities. Specifically, when applied to the classical statistical
setting of “large m, but fixed n”, it becomes the counterpart to Brillinger’s result [11]. It is natural to
seek further correspondences with the results in [20] by extending our results to the regularized version of
(9), to other loss functions, etc. Also, a particularly interesting research question that is raised is related
to unifying the effectiveness of the Lasso and of (9) in a single generic algorithm that would combine the
best of the two worlds and would apply for nonlinearities satisfying either µ` 6= 0 or µq 6= 0.

Out of all the nonlinear link functions, the quadratic deserves special attention since it corresponds
to the fundamental task of phase-retrieval. There has been an explosion in the development of methods
for this case over the past few years, with a particular focus towards rigorous recovery guarantees. See
[4, 5, 6] and many references therein.

Among the most well-established methods, are those based on semidefinite relaxation (e.g., [21, 4]).
Importantly, such solution methods were chronologically the first to enjoy rigorous recovery guarantees.
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They operate by lifting the original n-dimensional natural parameter space to a higher dimensional matrix
space. In this paper, we extend the lifting idea to general link functions beyond quadratics and obtain
rigorous recovery guarantees for this general setting. The drawback of lifting techniques is the increase
in the dimensionality, which introduces challenges in computational complexity and memory requirement
for the resulting algorithms. To overcome these issues, subsequent works on the phase-retrieval problem
develop nonconvex formulations of the phase retrieval problem and solution algorithms that start with a
careful spectral initialization (see [22, Sec. 6] for references), which is then iteratively refined by a gradient-
descent-like scheme of low computational complexity. See also [23, 24, 25] for a, more recent, alternative
convex formulation of the problem in the original n-dimensional parameter space. We speculate that
many of these solution methods can be combined with the ideas introduced in this paper to extend their
reach to non-quadratic link functions. This is a possibly interesting research direction.

Finally, this paper is also very closely related to the line of work in [26, 27, 2], which studies the
performance of spectral initialization for measurements of the form yi = f(|〈ai,x0〉|)2. However, we note
that [27, 2] only study the problem of perfect recovery and the results are asymptotic. Also, compared
to [26] our error analysis is tight with respect to the link function, i.e., the error bounds accurately
capture its effect in a few summary parameters. Such results can be directly useful in signal-processing
applications where the engineer has control over some parameters of the nonlinearity f [14], and also to
the design of pre-processing functions h (see [27, 2] for a successful application of this idea). We plan to
investigate such directions in future work.

1.5 Notation and organization

We use Sn to denote the set of real n × n symmetric matrices. 〈G,V 〉 = tr(GV) denotes the standard
inner product in Sn. For a matrix A ∈ Rm×n, ‖ · ‖2 and ‖ · ‖F denote its spectral norm and Frobenius
norm, respectively. For a vector x ∈ Rn, ‖x‖p denotes its `p norm, where p ≥ 0. For a matrix A ∈ Rm×n,
we use ‖A‖0 and ‖A‖1 to denote the `0 norm and `1 norm, respectively, of the mn-length vector obtained
by stacking the entries of A as a vector.

2 Error bounds for nonlinear measurements

2.1 An example: Sparse recovery

Here, we assume that the true signal x0 is sparse; let us denote the number of its non-zero entries by k.
Then, the matrix X0 = x0x

T
0 is also sparse with at most k2 non-zero entries. In order to promote its

sparsity we solve (9) with an `1-norm constraint. Theorem 2.1 below provides a bound on the performance
of the algorithm. Before that, recall the definitions of µq and τq in (8) and (11), respectively:

µ :=
1

2
E[(γ2 − 1)f(γ)], and τ2 := E

[(
f(γ)− µ · γ2

)2]
, for γ ∼ N (0, 1), (12)

where we have dropped the subscript q for convenience.

Theorem 2.1 (Sparse recovery). Suppose that x0 is k-sparse, ai ∼ N (0, I), and that y follows the

generalized linear model of (1). Assume that µ > 0, and let X̂ be the solution of the PhaseLift (9) with
KR = {X : ‖X‖1 ≤ µ‖X0‖1}. There exist universal constants c, C > 0 such that, if the number of
observations obeys

m ≥ c · k2 log(n/k) (13)

then, for sufficiently large n, X̂ satisfies

‖X̂ − µX0‖F ≤ C · τ ·
k log(n/k)√

m
, (14)
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with high probability.

Recall that a statement is said to hold with high probability if it holds with probability at least 0.99
(say). Also, the constants c, C > 0 in the statement of the theorem may only depend on the probability
of success. We defer the proof to Section C.1.

The theorem does not claim that X̂ is rank one. As usual, we obtain an estimate x̂ of x0 by extracting
the rank-one component (e.g. [4]). In particular, letting λ1 and v1 denote the maximum eigenvalue and
the principle eigenvector of X̂ respectively, we obtain x̂ =

√
λ1v1. Then, (20) guarantees that

‖x̂−√µx0‖2 ≤ C ·min
{√

µ,
E
√
µ

}
where E denotes the expression in the right hand side of (14). The proof is same as in [4, Sec. 6] and is
thus omitted.

The number of measurements needed by Theorem 2.1 is O
(
k2 log(n/k)

)
. Notably, this is the same

as the guarantees of [4] in the special case of quadratic measurements. Moreover, for quadratic mea-
surements, it is a well-known issue that this is an order of magnitude larger compared to the minimum
number of samples required for sparse recovery from linear measurements, which is O (k log(n/k)). The
same k2-barrier appears in most of the algorithms that have been thus far proposed for sparse recovery
from quadratic measurements (e.g., see [22, Sec. 6] and references therein). In that sense, the sam-
ple complexity of Theorem 2.1 is same as state of the art. Furthermore, it applies beyond quadratic
measurements and clearly captures the effect of the non-linearity in terms of the parameters µ and τ .

2.2 General result

The main result of this section Theorem 2.2 characterizes the error performance of (9) for general signal
structure and choice of the regularizer. Our bounds are given in terms of specific summary parameters
that we define in this section. We distinguish among two sets of parameters:

• Geometric parameters that capture the effectiveness of the imposed geometric constraints in (9)
for the purpose of promoting solutions of desired structure (positive semidefinite, low-rank, sparse,
etc.)

• Model parameters that capture the specific link-function f of the generalized linear measurement
model in (1).

2.2.1 Geometric parameters

First, we need the notion of tangent cone.

Definition 2.1 (Tangent cone). The tangent cone of a set K ⊂ Sn at X ∈ Sn is defined as

D(K, X) := {τV : τ ≥ 0, V ∈ K −X}.

Second, we need to recall the notion of (conic) Gaussian width.

Definition 2.2 (Gaussian width). Let K ⊂ Sn be a cone. Then, its conic Gaussian width ωg(C) is
defined as

ωg(C) := EG
[

sup
V ∈C
‖V ‖F=1

〈G,V 〉
]
, (15)

where G is a matrix from the Gaussian orthogonal ensemble (GOE), i.e. G = GT , Gii
iid∼ N (0, 1) for

i ∈ [n], and, Gij
iid∼ N (0, 1/2) for i > j ∈ [n].
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The Gaussian width plays a central role in asymptotic convex geometry: its square ωg(C)2 can be formally
described as as a measure of the effective dimension of C [28, 29]. It also appears as a key quantity in the
study of random linear inverse problems. Importantly, while it is an abstract geometric quantity, it is
possible in many instances to derive sharp numerical bounds that are explicit in terms of the parameters
of interest (such as ambient dimension, sparsity level). The methods and ideas have been developed in
recent line of work and are based on polarity arguments [30, 31, 29]; see also Appendix E. We make use
of these ideas in the proof of Theorem 2.2.

Finally, we need two more geometric parameters: Talagrand’s γ1- and γ2-functionals [32, Defn. 1.2.5].
To streamline the presentation, we defer the formal definitions of these parameters to Appendix D. We
mention here that they are generally both defined with respect to an arbitrary set T and arbitrary metric
d. For our purposes, we choose the metric as the Frobenius norm and the spectral norm for the γ2 and
γ1 functionals. Thus, for a set T ⊂ Sn we write

γ1(T , ‖ · ‖2) and γ2(T , ‖ · ‖F ).

The γ-functionals are fundamental in the study of suprema of random processes and specifically in the
theory of generic chaining [32]. In general, explicit calculation of the γ-functionals can be challenging
depending on the specific set T . However, it is often possible to control them in a sufficient (for our
purposes) way. Below, we briefly discuss two such approaches.

Remark 1 (Metric entropy). A simple and popular approach to obtain approximations is Dudley’s bound
that is expressed in terms of the metric entropy of the set. For a metric space (T , d) let N (T , d, ε) denote
the covering number of T with balls of radius ε in metric d. For α = 1, 2, there exist universal constant
C(α) > 0 such that

γα(T , d) ≤ C(α) ·
∫ ∞

0

(
log(N (T , d, ε))

)1/α
dε.

Please refer to [32, Sec. 1.2] for a proof for the case α = 2; the case α = 1 follows along the same
lines. While this approach is not tight in the general case ([32]; also see [33] for recent refinements), it
often results in satisfactory estimates. In particular it has been used successfully in compressed sensing
applications [9].

Remark 2 (Gaussian width). Specifically for the term γ2(C; ‖ · ‖F ), one can appeal to Talagrand’s ma-
jorizing measure theorem that establishes a tight (up to constants) relations to the Gaussian width [32,
Thm. 2.1.1]:

γ2(T ; ‖ · ‖F ) ≤ C · ωg(T )

For example, this is particularly useful when T can be expressed as the intersection of a cone with the
sphere (as is the case in Theorem 3.1). This is useful, since as discussed previously, the Gaussian width
can be often well approximated.

2.2.2 Model parameters

First, recall the definition of µ in (8)4:

µ :=
1

2
E[(γ2 − 1)f(γ)], for γ ∼ N (0, 1). (16)

When f is two times differentiable and f ′′ denotes its second derivative, then by integration by parts it
holds that

µ =
1

2
E[f ′′(γ)].

4Note that we have dropped the subscript q for the sake of simplicity.
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We further need to define the following parameters. For γ ∼ N (0, 1) let,

τ2 := E
[(
f(γ)− µ · γ2

)2]
,

υ2 := E
[
γ2 ·

(
f(γ)− µ · γ2

)2]
,

χ2 := E
[
(γ2 − 1)2 ·

(
f(γ)− µ · γ2

)2]
. (17)

All expectations are taken over γ and the possibly random link function f .

Remark 3. The results extend to the more general model of (2) with a natural modification in the
definitions (8) and (17). In particular, f(γ) is substituted by a (random variable) y ∼ p(y|γ), and the
expectation is over γ and the conditional distribution p(y|γ). We calculate the explicit values of these
model parameters for some standard link functions in Appendix A.

2.2.3 Main result

We are now ready to state the main result of this section.

Theorem 2.2 (General result). Suppose that ai ∼ N (0, I), and that y follows the generalized linear
model of (1). Recall the definitions of µ and of τ, υ, χ in (16) and in (17), respectively. Assume that
µ > 0 and that µX0 ∈ KR, where X0 = x0x

T
0 . Let S denote the unit sphere in Sn and call

Γ := min
{ √

n , γ2

(
D(KR, µX0) ∩ S, ‖ · ‖F

)
+ γ1

(
D(KR, µX0) ∩ S, ‖ · ‖2

) }
. (18)

There exist universal constants c, C > 0 such that, if the number of observations obeys

m ≥ c · Γ2, (19)

then, the solution X̂ of the PhaseLift (9) satisfies

‖X̂ − µX0‖F ≤ C ·
τ · Γ + υ ·min

{√
n, ωg

(
D(KR, µX0)

)}
+ χ

√
m

, (20)

with high probability.

As in Theorem 2.2, the constants may only depend on the probability of success. Also, notice that
Theorem 2.2 holds for all values of n. Typically, for large enough n, the first term in the right hand side
(RHS) of (20), i.e. τ · Γ√

m
, becomes the dominant term.

For a simple illustration of the theorem, consider the case of a generic true signal x0 in the sense that
no prior information is available. In this case, we solve the PhaseLift (9) with no additional constraints
other than X � 0 and tr(X) = µ. Hence, Γ ≤

√
n and from (39) the sample requirement is m ≥ c′ · n.

3 Technical results and proofs

3.1 Preliminaries

We begin this section by introducing the necessary notation. Let y = (y1, y2, . . . , ym) be the vector of m
observations: yi = fi(a

T
i x0) ∀ i ∈ [m]. Additionally, we use X0 and X̂ to denote x0x

T
0 and the solution

to the PhaseLift program in (9), respectively. For convenience, we write the loss function in (9) as

L(X) := ‖y −A(X)‖22,

9



where the operator A : Rn×n → Rm returns:

A(X) :=
(
aT1 Xa1 , aT2 Xa2 , . . . , aTmXam

)T
.

Recall that ‖x0‖ = 1 ⇔ tr(X0) = 1 and also µ > 0, so the matrix µX0 is feasible in (9). We define
the “error matrix” as

V̂ = X̂ − µX0.

Note that, in order to establish Theorem 2.2, we need to upper bound ‖V̂ ‖F . Towards this direction, let
us consider the excess loss function which is defined as follows.

L(µX0)− L(X̂) = ‖y −A(µX0)‖22 − ‖y −A(µX0 + V̂ )‖22

= −‖A(V̂ )‖22
2

+ 〈y −A(X0),A(V̂ )〉. (21)

3.2 The expected excess loss

Before we present a detailed proof of Theorem 2.2, it is instructive to see why the PhaseLift (9) encourages

small ‖V̂ ‖F by establishing the following result about the expected excess loss function.

Lemma 3.1 (Expected excess loss of PhaseLift). Let X be feasible in (9). In particular, X satisfies
tr(X) = µ. Then,

E[L(µX0)− L(X)] =
m

2
‖X − µX0‖2F . (22)

The lemma implies that µX0 minimizes the expected loss of (9) among all feasible solutions.
In the rest of this section, we prove lemma 3.1. We compute the expectation of the two terms in (21).

On the one hand, for any V ∈ Sn:

1

2
E‖A(V )‖22 =

1

2

m∑
i=1

E
(
aTi V ai

)2
=
m

2
·
(
3 ·
∑
i∈[n]

V 2
i,i + 2 ·

∑
i,j∈[n] : i 6=j

V 2
i,j +

∑
i,j∈[n] : i 6=j

Vi,iVj,j
)

= m · ‖V ‖2F +
m

2
·
(
tr(V )

)2
. (23)

On the other hand, we will show later that

E〈y − µ · A(X0),A(V )〉 = m · (E[f(γ)]− µ) · tr(V) . (24)

Before that observe that (23) and (24), yields for any V ∈ Sn:

E[L(µX0)− L(X)] = −m · ‖V ‖2F −
m

2
·
(
tr(V )

)2
+m · (E[f(γ)]− µ) · tr(V) .

Specifically, if V ∈ Sn further satisfies tr(V) = 0 then (22) is true as desired.
In the remaining, we show (24). To begin with, for any i ∈ [m], we can rewrite ai as

ai = x0x
T
0 ai +

(
I− x0x

T
0

)
ai =: Pai + P⊥ai, (25)

where P denotes the projection operator in the direction of x0, and P⊥ denotes projection to the space
orthogonal to the subspace spanned by x0. With this representation, and defining

γi := aTi x0,

10



for convenience, we have that

〈y − µ · A(X0),A(V )〉 =
∑
i∈[m]

(aTi V ai) ·
(
f(aTi x0)− µ · (aTi x0)2

)
=
∑
i∈[m]

(
(Pai)

TV (Pai) + (P⊥ai)
TV (P⊥ai) + 2 · (Pai)

TV (P⊥ai)
)
·
(
f(aTi x0)− µ · (aTi x0)2

)
=
∑
i∈[m]

(
γ2
i · xT0 V x0 + (P⊥ai)

TV (P⊥ai) + γi · xT0 V (P⊥ai) + γi · (P⊥ai)
TV x0

)
·
(
f(γi)− µ · γ2

i

)
,

= (Term I) + (Term II) + (Term III) (26)

where,

Term I :=
∑
i∈[m]

(
xT0 V x0

)
· (γ2

i − 1) ·
(
f(γi)− µ · γ2

i

)
, (27a)

Term II :=
∑
i∈[m]

(
(P⊥ai)

TV (P⊥ai) + xT0 V x0

)
·
(
f(γi)− µ · γ2

i

)
, (27b)

Term III :=
∑
i∈[m]

(
xT0 V (P⊥ai) + (P⊥ai)

TV x0

)
· γi ·

(
f(γi)− µ · γ2

i

)
. (27c)

Thus, it remains to compute the expectation of the three terms above.

1. E[Term I] : For convenience, denote

ξi := (γ2
i − 1)(f(γi)− µ · γ2

i ). (28)

By definition of µ in (8) observe that

E[ξi] = 0 ∀ i ∈ [m]. (29)

Hence, E[Term I] =
∑
i∈[m](x

T
0 V x0)E[ξi] = 0.

2. E[Term II] : Note that that set of random variables {γi = aTi x0}i∈[m] are independent of the

random vectors {P⊥ai}i∈[m] since,

EP⊥ai(a
T
i x0) = P⊥Eaia

T
i x0 = P⊥x0 = 0. (30)

Therefore, given two independent sets of measurement vectors {ai}i∈[m] and {ãi}i∈[m], the joint dis-

tribution of {γi = aTi x0, P
⊥ai}i∈[m] is identical to the joint distribution of {γi = aTi x0, P

⊥ãi}i∈[m].
This allows us to introduce the independent copy of random measurement vectors {ãi}i∈[m] in (27b)
as follows.

E[Term II] = E
∑
i∈[m]

(
(P⊥ãi)

TV (P⊥ãi) + xT0 V x0

)
·
(
f(γi)− µ · γ2

i

)
(31)

(i)
=
∑
i∈[m]

(
E[(P⊥ãi)

TV (P⊥ãi)] + xT0 V x0

)
· E[f(γi)− µ · γ2

i ]

(ii)
= m ·

(
E[f(γ)]− µ

)
· tr(V) .

where, (i) follows by independence of {ai}i∈[m] and {ãi}i∈[m]; and, (ii) follows since E[γ2] = 1 and

E[(P⊥ãi)
TV (P⊥ãi)] = tr(P⊥VP⊥E[ãiã

T
i ]) = tr(P⊥VP⊥) = tr(V)−xT0 V x0.

11



3. E[Term III] : Repeating the argument that led to (31), we can take the expectation in E[Term III]
with respect to {γi = aTi x0, ãi}, where {ai} and {ãi} two independent copies of the Gaussian
measurement vectors. This allows us to write Term III as

E[Term III] = E
∑
i∈[m]

(
tr((P⊥ãi)x

T
0 V) + tr(x0(P⊥ãi)

TV)
)
·
(
γi · (f(γi)− µ · γ2

i )
)
, (32)

=
∑
i∈[m]

(
tr((P⊥E[ãi)]x

T
0 V) + tr(x0(P⊥E[ãi])

TV)
)
· E[γi·(f(γi)− µ · γ2

i )] = 0,

where, the last equality follows because ãi’s are centered.

3.3 Main technical result

It follows from the optimality of X̂ and feasibility of µX0 for the program in (9) that

L(µX0)− L(X̂) ≥ 0. (33)

By combining this observation with (21), we obtain

‖A(V̂ )‖22
2

≤ 〈y − µ · A(X0),A(V̂ )〉. (34)

On the one hand, recall from (9) that V̂ satisfies tr(V ) = 0, µX0 + V � 0 and µX0 + V ∈ KR. Thus, V̂
belongs to the following convex cone

C0 := C+ ∩ CR, (35)

where the cones C+ and CR are defined as follows:

C+ := {V : µX0 + V � 0, and tr(V ) ≤ 0 } and CR := D(KR;µX0). (36)

From this, V̂ /‖V̂ ‖F belongs to the spherical part of C0:

E := {V : V ∈ C0 and ‖V ‖F = 1}.

On the other hand, observe in (34) that the LHS (resp., RHS) is homogeneous of degree 2 (resp., 1).
With these, it follows from (34) that

‖V̂ ‖F · inf
V ∈E

‖A(V )‖22
2

≤ sup
V ∈E
〈A(V ),y − µ · A(X0)〉. (37)

From (37), it suffices to obtain high-probability lower and upper bounds on the quantities on the LHS

and on the RHS, respectively. This will immediately lead to an upper bound on ‖V̂ ‖F .

We present the bound in Theorem 3.1 below, which is the main technical result of this paper. Com-
bining this with the methodologies of Section 3.4 on controlling the weighted empirical width (cf. Defini-
tion 3.1) leads to Theorems 2.2 and 2.1. We defer this to Appendices C.2 and C.1.

Before the statement of the theorem, we define an appropriate generalization of the Gaussian width
to our setting.

12



Definition 3.1 (Weighted empirical quadratic Gaussian width). Let a1, . . . ,am ∈ Rn be independent
copies of a standard normal vector N (0, In) and ε1, ε2, . . . , εm be independent Rademacher random vari-
ables. For a set C ⊂ Sn and a vector p := (p1, . . . , pm) define the weighted empirical quadratic Gaussian
width ωe(C; p) as follows:

ωe(C; p) := E
[

sup
V ∈C
〈V,Hp〉

]
, where Hp :=

1√
m

m∑
i=1

pi · εi · aiaTi , (38)

and the expectation is over the randomness of {ai}. In particular, when p = 1 we write

ωe(C) := ωe(C; 1),

and call this the empirical quadratic Gaussian width.

The terminology weighted empirical quadratic Gaussian width precisely reflects the facts that com-
pared to the Gaussian width in (15), Hp involves a normalized sum (cf., “empirical”) of weighted (by
pi’s) outer products (cf., “quadratic”) of Gaussian random vectors. The role of the Rademacher random
variables is simply to guarantee that Hp is centered. For convenience, we onwards refer to ωe(C; p) and
ωe(C) simply as the weighted empirical width and empirical width, respectively. In Section 3.4 we discuss
efficient ways to control the weighted empirical width.

Theorem 3.1 (Main technical result). Suppose that ai ∼ N (0, I), and that y follows the generalized
linear model of (1). Recall the definitions of µ and of υ, χ in (16) and in (17), respectively. Assume that
µ > 0 and µX0 ∈ KR, where X0 = x0x

T
0 . Let C0 be as in (35) and recall Definition 3.1. Finally, define

η := (η1, . . . , ηm), where ηi :=
(
f(γi)− µ · γ2

i

)
, i ∈ [m] for γi

iid∼ N (0, 1).
There exist constants c, C > 0 such that, if the number of observations obeys

m ≥ c · (ωe(C0; 1))
2
, (39)

then, the solution X̂ of the PhaseLift (9) satisfies

‖X̂ − µX0‖F ≤ C ·
Eη

[
ωe(C0;η)

]
+ υ
√

2 · ωg(C0) + χ
√
m

, (40)

with high probability.

3.3.1 Proof of Theorem 3.1

In the rest of this section, we prove Theorem 3.1.

Lower bound: First, we lower bound the LHS of (37). This can be done based on Mendelson’s Small
Ball method, a powerful strategy developed for lower bounding nonnegative empirical processes [34],
which can be thought of as a generalization of Gordon’s escape through a mesh lemma beyond Gaussians
(cf. Section 2.2.1). We summarize the result in Lemma 3.2 below and defer details to Appendix B.

Lemma 3.2 (Lower bound). There exists positive absolute constant c > 0 such that for any t > 0 it
holds

inf
V ∈E
‖A(V )‖2 ≥ c ·

√
m− 2 · ωe(C0; 1)− t, (41)

with probability at least 1− e−t2/4.
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Upper bound: Next, we upper bound the expression on the RHS of (37). From (26),

sup
V ∈E
〈y − µ · A(X0),A(V )〉 ≤ sup

V ∈E
(Term I) + sup

V ∈E
(Term II) + sup

V ∈E
(Term III), (42)

where we recall the definitions in (27). We separately upper bound each one of these three terms. This
leads to the following lemma, the proof of which is deferred to Section 3.3.2.

Lemma 3.3 (Upper bound). Let υ, χ and η be defined as in the statement of Theorem 3.1. Then,

E sup
V ∈E
〈y − µ · A(X0),A(V )〉 ≤

√
m ·

(
χ+
√

2 · υ · ωg(C0) + 2 · E
[
ωe(C0;η)

])
(43)

Putting things together: In the rest of the argument, c, C refer to numerical constants, whose value
may differ from instance to instance. First, Lemma 3.2 and (39) imply that there exists constant c > 0
such that the following event holds with probability at least 0.995:

inf
V ∈E

1

m
‖A(V )‖22 ≥ c.

Second, Lemma 3.3 combined with Markov’s inequality imply that the the following event also holds with
probability at least 0.995:

sup
V ∈E
〈y − µ · A(X0),A(V )〉 ≤

√
m ·

(
χ+
√

2 · υ · ωg(C0) + 2E
[
ωe(E ;η)

])
.

By the union bound, both events hold with probability 0.99. Conditioned on them, the desired follows
immediately from (37).

3.3.2 Proof of Lemma 3.3

Here, we present the proof of Lemma 3.3. We separately upper bound each one of the three terms in the
RHS of (42).

1. Bounding Term I : Recalling the definition of ξi in (28), note that

E sup
V ∈E

∑
i∈[m]

ξi · xT0 V x0 ≤ E sup
V ∈E
‖V ‖F ·

∣∣ ∑
i∈[m]

ξi
∣∣ (i)

≤ E
∣∣ ∑
i∈[m]

ξi
∣∣ = E

√√√√( ∑
i∈[m]

ξi

)2

(ii)

≤

√√√√E
( ∑
i∈[m]

ξi

)2

(iii)
=

√∑
i∈[m]

Eξ2
i

=
√
m ·

√
Eξ2

1︸ ︷︷ ︸
=χ

, (44)

where: (i) follows from ‖x0‖2 = 1 and V ∈ E =⇒ ‖V ‖F = 1 =⇒ supV ∈E xT0 V x0; (ii) follows
from Jensen’s inequality; and, (iii) by independence of the ξi’s and (29).

14



2. Bounding Term II : Recall from (45) that we can rewrite Term II as follows:

E sup
V ∈E

∑
i∈[m]

(
(P⊥ãi)

TV (P⊥ãi) + xT0 V x0

)
·
(
f(γi)− µ · γ2

i

)
= E sup

V ∈E

∑
i∈[m]

(
(P⊥ãi)

TV (P⊥ãi) + xT0 V x0

)
· ηi, (45)

where the expectation is taken over {γi, P⊥ãi}i∈[m], {ãi}i∈[m] are independent of {γi}i∈[m], and we
have defined

ηi :=
(
f(γi)− µ · γ2

i

)
.

For vectors gi ∼ N(0, I), we have E(gTi x0)2 = 1 and E(gi
Tx0) = 0; hence we can rewrite (45) in

the following manner.

E sup
V ∈E

∑
i∈[m]

(
(P⊥ãi)

TV (P⊥ãi) +
(
E(gTi x0)2

)
· xT0 V x0 + E(gTi x0) · ãTi P⊥V x0

)
· ηi

(i)
= E sup

V ∈E

∑
i∈[m]

E
((

(P⊥ãi)
TV (P⊥ãi) + (gTi x0)2 · xT0 V x0 + gTi x0 · ãTi P⊥V x0

)
· ηi | {γi, P⊥ãi}i∈[m]

)
(ii)
= E sup

V ∈E

∑
i∈[m]

E
((

(P⊥ãi)
TV (P⊥ãi) + (ãTi x0)2 · xT0 V x0 + ãTi x0 · ãTi P⊥V x0

)
· ηi | {γi, P⊥ãi}i∈[m]

)
(iii)

≤ E sup
V ∈E

∑
i∈[m]

(
(P⊥ãi)

TV (P⊥ãi) + (ãTi x0)2 · xT0 V x0 + ãTi x0 · ãTi P⊥V x0

)
· ηi

(iv)

≤ E sup
V ∈E

∑
i∈[m]

(
ãTi V ãi

)
· ηi = E sup

V ∈E

〈 ∑
i∈[m]

ηi · ãiãTi , V
〉
, (46)

where (i) follows from the conditioning over {γi, P⊥ãi} which are independent of the random vector
g. Since {ãTi x0}i are independent of {P⊥ãi} (cf. (30)), we replace {gTi x0} with {ãTi x0} in order
to obtain (ii). The terms (iii) and (iv) follow from Jensen’s inequality and the fact that

ãi = P ãi + P⊥ãi = (ãTi x0)x0 + P⊥ãi.

Next, we continue from (46) using the fact that V ∈ E =⇒ tr(V) = 0 as follows:

E sup
V ∈E

∑
i∈[m]

ηi
〈
ãiã

T
i , V

〉
= E sup

V ∈E

∑
i∈[m]

ηi
(〈

ãiã
T
i , V

〉
− tr(V)

)
= E sup

V ∈E

∑
i∈[m]

ηi
〈
ãiã

T
i − I, V

〉
≤ 2 · E sup

V ∈E

∑
i∈[m]

ηi
〈
εiãiã

T
i , V

〉
= 2
√
m · Eη

[
ωe(C0;η)

]
(47)

where, the last inequality follows from standard symmetrization argument, and ε1, . . . , εm are in-
dependent Rademacher random variables.

3. Bounding Term III : Let us define

ζi := γi · (f(γi)− µ · γ2
i ).
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As in (32), we can we can rewrite Term III as follows

E sup
V ∈E

∑
i∈[m]

ζi ·
(

tr((P⊥ãi)x
T
0 V) + tr(x0(P⊥ãi)

TV)
)
. (48)

Note that the expectation is take with respect to {γi = aTi x0, ãi}, where {ai} and {ãi} two inde-
pendent copies of Gaussian measurement vectors.

For i ∈ [m], let Γ(i,1) be a random matrix with i.i.d. standard normal vectors as its entries. Since x0

is assumed to be a unit norm vector, for i ∈ [m], the distribution of ãi is identical to the distribution
of random vector Γ(i,1)x0. Therefore, we can express Term III (cf.(48)) as follows.

E sup
V ∈E

∑
i∈[m]

ζi
(

tr(P⊥Γ(i,1)x0x
T
0 V) + tr(x0x

T
0 ΓT

(i,1)P
⊥V)

)
= E sup

V ∈E

∑
i∈[m]

ζi ·
(

tr((P⊥Γ(i,1)P + (P⊥Γ(i,1)P)TV)
)
, (49)

Let’s consider three sets of independent random matrices {Γ(i,2)}i∈[m], {Γ(i,3)}i∈[m] and {Γ(i,4)}i∈[m]

that: (a) have i.i.d. standard Gaussian entries; (b) are independent of each other; and (c) are
independent of all the random variable that appeared so far. Since, for i ∈ [m], we have EΓ(i,2) =
EΓ(i,3) = EΓ(i,4) = 0, we express Term III (cf. (49)) as follows.

E sup
V ∈E

∑
i∈[m]

ζi ·
(〈
P⊥Γ(i,1)P + PEΓ(i,2)P + P⊥EΓ(i,3)P

⊥ + PEΓ(i,4)P
⊥, V

〉
+
〈
(P⊥Γ(i,1)P + PEΓ(i,2)P + P⊥EΓ(i,3)P

⊥ + PEΓ(i,4)P
⊥)T , V

〉)
(i)

≤ E sup
V ∈E

∑
i∈[m]

ζi ·
(〈
P⊥Γ(i,1)P + PΓ(i,2)P + P⊥Γ(i,3)P

⊥ + PΓ(i,4)P
⊥, V

〉
+
〈
(P⊥Γ(i,1)P + PΓ(i,2)P + P⊥Γ(i,3)P

⊥ + PΓ(i,4)P
⊥)T , V

〉)
(ii)

≤ EG̃i,ζi sup
V ∈E

∑
i∈[m]

ζi ·
〈
G̃i + G̃Ti , V

〉
=
√

2 · EGi,ζi sup
V ∈E

〈 ∑
i∈[m]

ζi ·Gi, V
〉
, (50)

where: (i) follows from Jensen’s inequality; (ii) uses Lemma 3.4 that shows P⊥Γ(i,1)P +PΓ(i,2)P +

P⊥Γ(i,3)P
⊥ + PΓ(i,4)P

⊥ ∼ G̃i for a matrix G̃i with entries iid standard Gaussian. Finally, in the

right hand side of the last equality Gi = (G̃i + G̃Ti )/
√

2 is a matrix from the Gaussian orthogonal
ensemble (GOE).

Lemma 3.4. Consider A,B,C,D ∈ Rn×n that have entries iid standard Gaussian and are inde-
pendent of each other. Let P, P⊥ be orthogonal projections with P + P⊥ = I. Then, the matrix

X = P⊥AP + PBP⊥ + P⊥CP⊥ + PDP⊥

has entries iid standard Gaussian.

Proof. We can write X = X1P + X2P
⊥, with X1 = P⊥A + PB and X2 = P⊥C + PD. We show

that X1, X2 are independent with entries iid standard Gaussian each. Let yi denote the ith column
of a matrix Y . Clearly, xi1 is a Gaussian vector with mean zero entries. Also,

E[xi1(xi1)T ] = P⊥E[ai1(ai1)]TP⊥+PE[bi1(bi1)T ]P+PE[bi1(ai1)T ]P⊥]+P⊥E[ai1(bi1)T ]PT = P⊥+P = I.
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Thus, xi1 ∼ N (0, I). Moreover, xi1 is independent of xj1 for i 6= j. This shows that X1 has entries
iid standard Gaussian. Of course, the same argument shows that this is also true for X2. Clearly,
X1 is independent of X2. With these, and repeating the argument above for X1, it is easy to show
that X = X1P +X2P

⊥ has entries iid Gaussian.

Now condition on {ζi}. By rotational invariance of the Gaussian measure,
∑
i∈[m] ζi·Gi is distributed

as
(∑

i∈[m] ζ
2
i

)1/2

G, where G is a GOE matrix. Thus,

(50) ≤
√

2 · E[
( ∑
i∈[m]

ζ2
i

)1/2
] · E sup

V ∈E

〈
G,V

〉
≤
√

2 ·
√

E[ζ2
1 ]︸ ︷︷ ︸

=υ

·
√
m · E sup

V ∈E

〈
G,V

〉
︸ ︷︷ ︸

ωg(E)

, (51)

where the last inequality follows from Jensen.

Combining (42) with (44), (50), and (51) we conclude with Lemma 3.3.

3.4 Controlling the weighted empirical width

The weighted quadratic Gaussian width ωe(C; p) depends both on the geometry of the cone C and on the
weights pi. A simple way to isolate the dependence of ωe(C;η) on the weights and on the geometry is
through contraction [35, Thm. 4.4] as follows:

ωe(C; p) = Eãi

[
Eεi sup

V ∈C

∑
i∈[m]

piεi
〈
ãiã

T
i , V

〉]
≤ Eãi

[(
max
i∈[m]

pi
)
· Eεi sup

V ∈C

∑
i∈[m]

εi
〈
ãiã

T
i , V

〉]
= ‖p‖∞ · ωe(C). (52)

However, this may not always give the right statistical rates. We present here two alternative ways of
controlling ωe(C; p).

3.4.1 First bound: generic chaining

The first one is very general and provides a bound on ωe(C; p) in terms of the following. On the one
hand, the aspects of the geometry of C are captured by Talagrand’s γ1- and γ2- functionals with respect
to appropriate metrics. On the other hand, the role of the weights is captured by the `∞- and `2-norm
of p.

Lemma 3.5 (Generic chaining bound). For a cone C ⊂ Sn and p ∈ Rm, recall the definition of the
weighted empirical width ωe(C; p) in (38). There exists universal constant C > 0 for which:

ωe(C; p) ≤ C · ‖p‖2 · γ2(C; ‖ · ‖F ) + ‖p‖∞ · γ1(C; ‖ · ‖2)√
m

. (53)

In particular,

ωe(C) = ωe(C; 1) ≤ C ·
(
γ2(C; ‖ · ‖F ) +

γ1(C; ‖ · ‖2)√
m

)
. (54)

We defer the proof of the lemma to Appendix D. Note from (53) that further using the crude bound
‖p‖∞ ≤ ‖p‖2 leads to the following simplified expression:

ωe(C; p) ≤ C · ‖p‖2√
m
· (γ2(C; ‖ · ‖F ) + γ1(C; ‖ · ‖2)) . (55)
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3.4.2 Second bound: polarity

Alternatively, it is possible to directly apply polarity arguments, which have been recently developed in
the compressed sensing literature for the Gaussian width, but extend to more general notions such as
the weighted empirical width. The idea is as follows. It can be shown using polarity that ωe(C; p) is
upper bounded by the expected distance of Hp to the polar cone C◦, which is useful when a convenient
description of C◦ is available. For example, this is the case when C is the tangent cone of some convex
proper function (say) R. Then, from standard results in convexity, C◦ is the cone of subdifferential of R
[36]. This is summarized in Proposition 3.1 below.

Definition 3.2. The descent cone of a proper convex function R : Sn → R at a point X0 ∈ Sn is defined
as

D(R, X0) := {λV : λ ≥ 0,R(X0 + V ) ≤ R(X0)}.

The following proposition is based on the principles developed in [30, 31]. Here, we follow the expo-
sition in [37, Prop. 7.1].

Proposition 3.1 (Polarity bound). Let R : Sn → R be a proper convex function, and fix X0 ∈ Sn.
Assume that the subdifferential ∂R(X0) is non-empty and does not contain the origin. Then, for Hp =

1√
m

∑
i∈[m] pi · εiaiaTi it holds:

ω2
e(D(R, X0); p) ≤ E

[
inf
λ≥0

inf
V ∈∂R(X0)

∥∥Hp − λ · V ‖2F
]

For specific choices of R, it is possible to upper bound the RHS of (3.1) on a case-by-case basis.
Many such examples have been worked out in the literature for the case of the Gaussian width (i.e., an
iid Gaussian matrix instead of Hp in (3.1)), e.g. [29] and references therein. For illustration, in Lemmas
3.6 and 3.7 below we apply proposition 3.1 to bound the weighted empirical width of the following two
cones: (a) C+; and, (b) CR for sparse recovery. We defer the proofs of both of these results to Appendix E.

Lemma 3.6 (Weighted empirical width of C+). For p := (p1, . . . , pm) and the cone C+ = {V : µX0+V �
0, and tr(V ) ≤ 0 }, there exists universal constant C > 0 such that

ωe(C+; p) ≤ C√
m
· (‖p‖2

√
n+ ‖p‖∞n).

In particular,

ωe(C+; 1) ≤ C ·
√
n, provided that m ≥ c · n for some constant c > 0. (56)

Lemma 3.7 (Weighted empirical width of Csparse). Let X0 = x0x
T
0 where x0 is k-sparse. For p :=

(p1, . . . , pm) and the cone Csparse := {V : ‖µX0 +V ‖1 ≤ ‖µX0‖1}, there exists universal constant C > 0
such that

ωe(Csparse; p) ≤ C√
m
· k ·

√
log (n/k)

(
‖p‖2 + ‖p‖∞

√
2log (n/k)

)
.

In particular,

ωe(Csparse,1) ≤ C · k
√

log (n/k), provided that m ≥ c · k2 log (n/k) for some constant c > 0.
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A Model parameters for standard link functions

Here, we evaluate the model parameters defined in Section 2.2.2 for some standard link functions. In
what follows, as defined in Section 2.2.2, γ denotes a standard Gaussian random variable.

Quadratic with additive bounded noise. Let yi = f
(
aTi x0

)
= |aTi x0|2 + zi, with |zi| ≤ δ and

independent of everything else. In this case, we have

µ =
1

2
E[f ′′(γ)] =

1

2
· 2 = 1.

Now the model parameter τ can be evaluated as

τ2 = E[
(
f
(
γ)− γ2

)2]
= E

[
z2
]
≤ δ2

or τ ≤ δ. Similarly, one can easily verify that, for the underlying link function, we have υ ≤ δ and
χ ≤ δ

√
2.

Quadratic with additive gaussian noise. Let yi = f
(
aTi x0

)
= |aTi x0|2 + zi, with the noise zi ∼

N (0, s2) and independent of everything else. Again, it holds that µ = 1. Now, we have

τ2 = E[
(
f
(
γ)− γ2

)2]
= E

[
z2
]

= s2

or τ = s. Moreover, it can be easily verified that υ = s. Furthermore, we have

χ = E
[
(γ2 − 1)2 ·

(
f(γ)− γ2

)2]
= E

[
(γ2 − 1)2 · z2

]
= E[γ4 + 1− 2γ2] · E[z2] = 2s2

or χ = s
√

2.

Quadratic with Poisson noise. Let yi ∼ Poisson
(
(aTi x0)2

)
. Towards computing the summary param-

eters, let Y denote a random variable with distribution Y ∼ Poisson
(
γ2
)
. Then, by conditioning on γ,

we can calculate the value of µ as follows.

µ =
1

2
Eγ,Y

[
(γ2 − 1)Y

]
=

1

2
Eγ
[
(γ2 − 1)E

[
Y | γ

]]
=

1

2
Eγ,Y

[
(γ2 − 1)γ2

]
= 1.

Next, we utilize the value of µ to compute the parameter τ as

τ2 = Eγ,Y
[(
Y − γ2

)2]
= Eγ

[
EY
[(
Y − γ2

)2 |γ]] = Eγ
[
γ2
]

= 1.

Similarly,

υ2 = Eγ,Y
[
γ2 ·

(
Y − γ2

)2]
= Eγ

[
γ2 · EY

[(
Y − γ2

)2 |γ]] = Eγ
[
γ4
]

= 3,

and

χ2 = Eγ,Y
[
(γ2 − 1)2 ·

(
Y − γ2

)2]
= Eγ

[
(γ2 − 1)2 · EY

[(
Y − γ2

)2 |γ]] = Eγ
[
γ6 + γ2 − 2γ4

]
= 10.
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B Mendelson’s lower bound on nonnegative empirical process

In this section we deduce Lemma 3.2 from [34, Thm. 5.4]. We start with the following result, which is
an immediate application of [34, Thm. 5.4] to our setting. In particular, we follow here the exposition in
[37, Prop. 5.1].

Lemma B.1 (Lower bound for a nonnegative empirical process [34]). Fix a set C ∈ Sn. Let a ∼ N (0, I),
and let a1, . . . ,am be independent copies of a. Introduce the marginal tail function

Qξ(C; a) := inf
V ∈C

P( | tr(Vaia
T
i ) | ≥ ξ ), where ξ ≥ 0.

Let ε1, . . . , εm be independent Rademacher random variables, independent from everything else, and define
the empirical mean width of the set:

Wm(C; a) := E sup
V ∈C

tr(VH) where H :=
1√
m

m∑
i=1

εiaia
T
i .

Then, for any ξ > 0 and t > 0, with probability at least 1− e−t2/2 it holds,

inf
V ∈C

(
m∑
i=1

| tr(Vaia
T
i ) |2

)1/2

≥ ξ
√
m ·Q2ξ(C; a)− 2Wm(C; a)− ξt.

It is further shown in [37, Sec. 8.5] that if C is a subset of the sphere, i.e., if

V ∈ C =⇒ ‖V ‖F = 1, (57)

then, for some absolute constant c0 > 0 it holds

Q1(C; a) ≥ c0.

Also, if (57) holds then note that the definition of Wm(C; a) coincides with the definition of ωe(C) in
Definition 3.1. Combining these with Lemma B.1, it follows that

inf
V ∈C
‖A(V )‖2 = inf

V ∈C

(
m∑
i=1

| tr(Vaia
T
i ) |2

)1/2

≥ c0 ·
√
m− 2ωe(C)− t. (58)

with probability at least 1− e−t2/4. The set E of Lemma 3.2 clearly satisfies (57). Hence, this concludes
the proof.

C Proofs for Section 2

C.1 Proof of Theorem 2.1

We start from Theorem 3.1 and we directly control the weighted empirical width using the polarity
strategy of Section 3.4.2. Specifically, we use Lemma 3.7.

Note that Csparse is the tangent cone of the constraint set KR = {X : ‖X‖1 ≤ µ‖X0‖1} at X0. Also,
since C0 ⊂ Csparse, it holds ωe(C0; p) ≤ ωe(Csparse; p); thus the lemma directly applies to Theorem 3.1. In
more detail, we have

Eη[ωe(C0;η)] ≤ C · k ·
√

log(n/k) ·
(
Eη‖η‖2√

m
+

Eη‖η‖∞√
m

√
2 log(n/k)

)
. (59)
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Recall the definitions of η and note that

Eη‖η‖2 ≤
√

Eη‖η‖22 ≤
√
m · E[η2

1 ] =
√
mτ.

Thus using the crude bound ‖η‖∞ ≤ ‖η‖2 results in the following:

Eη[ωe(C0;η)] ≤ C · τ · k ·
√

log(n/k)
(

1 +
√

2 log(n/k)
)
. (60)

It only remains to compute the Gaussian width of Csparse. It is know that (e.g., [31, Prop. 3.10])

ωg(Csparse) ≤ 3
√

2k
√

log(n/k). (61)

Putting (60) and (61) in (40), we have shown that if m ≥ ck2 log(n/k) it holds with high probability:

‖X̂ − µX0‖F ≤ C1 ·
C2 · τ · k

√
log(n/k)

(
1 +

√
2 log(n/k)

)
+ 6υ · k

√
log(n/k) + χ

√
m

. (62)

Then, the statement of Theorem 2.1 follow from (62) by taking n (in fact n/k) large enough (which will
depend on C2, τ , ρ and χ).

C.2 Proof of Theorem 2.2

We apply Theorem 3.1, but we need to control the weighted empirical width. Recall from (35) that
C0 = C+ ∩ CR, hence

ωe(C0; p) ≤ min{ωe(C+; p), ωe(CR; p)}.

First, we prove that

(19)⇒ (39). (63)

On the one hand, if
√
m ≥ c

√
n, then from polarity arguments in Lemma 3.6 (specifically, Equation (56))

we have that ωe(C+; 1) ≤ C
√
n ≤ C ′

√
m. On the other hand, if

√
m ≥ c (γ2(CR ∩ S; ‖ · ‖F ) + γ1(CR ∩ S; ‖ · ‖2)) ,

then by (54):

ωe(CR ∩ S) ≤ C ·
(
γ2(CR ∩ S; ‖ · ‖F ) +

γ1(CR ∩ S; ‖ · ‖2)√
m

))
≤ C ′

√
n.

Thus, we have shown (63).
Next, we show that

Eη[ωe(C0;η)] ≤ C · τ ·min
{√

n, γ2(CR ∩ S; ‖ · ‖F ) + γ1(CR ∩ S; ‖ · ‖2)
}

We will repeatedly use the fact that

Eη‖η‖∞ ≤ Eη‖η‖2 ≤ τ
√
m.

On the one hand, if
√
m ≥ c

√
n then from Lemma 3.6:

Eη[ωe(C0;η)] ≤ C · τ
√
n√
m

(1 +
√
n) ≤ C ′τ

√
n.
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On the other hand, from Eqn. (55),

Eη[ωe(CR;η)] ≤ C · τ (γ2(CR ∩ S; ‖ · ‖F ) + γ1(CR ∩ S; ‖ · ‖2)) .

Thus, we have shown (C.2).
Finally, the proof of the theorem is complete by establishing that

ωg(C0) ≤ min{
√
n, ωg(CR)}.

This follows using ωg(C0) ≤ min{ωe(C+), ωe(CR)} and the well-known bound ωg(C+) ≤ 6
√
n (e.g. [31]).

D Controlling the weighted empirical width via generic chaining

D.1 Background

For a set T , we say that a sequence {An} of partitions of T is increasing if every set of An+1 is contained
in a set of An.

Definition D.1 (Admissible sequence). Given a set T , an admissible sequence is an increasing sequence
{An} of partitions of T such that card(An) ≤ Nn:= 22n .

Given a partition An of T and t ∈ T , we use An(t) to denote the set in An that contains t. With this
notation in place, we now define a useful geometric quantity for the metric space (T , d).

Definition D.2. Given α > 0 and a metric space (T , d), we define

γα(T , d) = inf sup
t

∑
n≥0

2n/α∆(An(t)), (64)

where ∆(An(t)) denotes the diameter of the set An(t). The infimum in (64) is taken over all admissible
sequences.

Proposition D.1 ([32, Theorem 1.2.7]). For a set T with two distances d1 and d2, consider a process
{Xt}t∈T such that EXt = 0 and ∀ s, t ∈ T , ∀ u > 0,

P (|Xs −Xt| ≥ u) ≤ 2 exp

(
−min

( u2

d2(s, t)2
,

u

d1(s, t)

))
. (65)

Then,

E sup
s,t∈T

|Xs −Xt| ≤ L ·
(
γ1(T , d1) + γ2(T , d2)

)
. (66)

We consider the following zero-mean process XV := 〈
√
mHp, V 〉 indexed by V ∈ Sn. We show in

Lemma F.2 that the process satisfies:

P ( |XV −XU | ≥ t ) ≤ 2 exp

(
−min

{
t2

4‖p‖22‖V − U‖2F
,

t

‖p‖∞‖V − U‖2

})
, (67)

for all t ≥ 0 and V,U ∈ Sn. Therefore, we can employ Proposition D.1 with distances d1(T,U) =
‖p‖2‖T − U‖F and d1(T,U) = ‖p‖∞‖T − U‖2 to obtain the desired:

E sup
V ∈C

XV ≤ L ·
(
γ1(C, ‖p‖∞‖ · ‖2) + γ2(C, ‖p‖2‖ · ‖F )

)
≤ L ·

(
‖p‖∞ · γ1(C, ‖ · ‖2) + ‖p‖2 · γ2(C, ‖ · ‖F )

)
.
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E Computing the weighted empirical quadratic Gaussian width
via polarity

Here, we prove Lemmas 3.6 and 3.7.

E.1 Proof of Lemma 3.6

For an illustration of the applicability of Proposition 3.1 we use it here to control the empirical quadratic
Gaussian width of the cone

C+ = {V : µX0 + V � 0, and tr(V ) ≤ 0 }.

Recall that the set of feasible directions in (9) is a subset of C+. In order to put this into the language
of Proposition 3.1, note that C+ = D(R, µX0) for the following convex function R : Sn → R

R(X) := tr(X) +

{
0, X � 0,

+∞, else,

where, we also used the fact that X0 � 0.
The proof of the lemma follows rather standard arguments. Similar calculation are performed in [37,

Sec. 8.6.2]. In particular, the second statement of the lemma can also be found in [37].

Proof. By rotational invariance of the Gaussian distribution, we may assume without loss of generality
that

X0 = x0x
T
0 =

[
‖x0‖22 0T

0 0

]
.

Also, partition H as follows

H =

[
h11 hT12

h12 H22

]
.

Let

λ = λmax(H22) (68)

the maximum eigenvalue of H22. From Proposition 3.1,

ω2
e(C+; p) ≤ E

[
inf

V ∈∂R(X0)
‖H − λ · V ‖2F

]
(i)
= E

[
(h11 − λ)2

]
+ 2E

[
‖h12‖22

]
+ E

[
inf

S: λmax(S)≤1
‖H22 − λS‖2F

]
(ii)
= E

[
(h11 − λ)2

]
+ 2 · E

[
‖h12‖22

]
. (69)

where: (i) uses the fact that (e.g., [37, Sec. 8.6.1])

∂R(X0) =

{ [
1 0T

0 S

]
: λmax(S) ≤ 1

}
;

(ii) uses (68). It remains to compute the two terms in (69). On the one hand, we have

E
[
‖h12‖22

]
=

1

m
E
[ n∑
`=2

( ∑
i∈[m]

piεiai,1ai,`
)2]

=
1

m

[ n∑
`=2

∑
i∈[m]

p2
i

]
=
‖p‖22
m

(n− 1). (70)
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On the other hand, by interlacing of eigenvalues

λ = λmax(H22) ≤ λmax(H),

and, as shown in Lemma F.1:

λmax(H) ≤ C1√
m
· (‖p‖2

√
n+ ‖p‖∞n).

Thus,

E
[
(h11 − λ)2

]
=

1

m
E
[( ∑
i∈[m]

piεia
2
i,1

)2]
+ λ2 ≤ 3

‖p‖22
m

+ λ2. (71)

Putting together (70) and (71) in (69), it follows that

ωe(C+; p) ≤ C2√
m
· (‖p‖2

√
n+ ‖p‖∞n),

as desired. To prove the remaining statement, let p = 1 above. Note that ‖1‖2 =
√
m and ‖1‖∞ = 1.

Thus, provided that m ≥ c · n: ωe(C+; p) ≤ C3
√
n, as desired.

E.2 Proof of Lemma 3.7

Here, we prove Lemma 3.7. We employ Proposition 3.1 to control the quadratic width. Note that Csparse

is the descent cone of the `1-norm at X0, i.e., Csparse = D(R, µX0) for R : Sn → R such that

R(X) := ‖X‖1 =
∑
k,`∈[n]

Xk`.

By applying Propostion 3.1, we bound the empirical quadratic Gaussian width of Csparse in the fol-
lowing lemma.

Proof. Start by recalling the following characterization of the subgradient set of ‖X‖1:

S ∈ ∂R(X) ⊂ Rn×n

iff, for i, j ∈ [n],

Si,j =


1 if Xi,j > 0,

−1 if Xi,j < 0,

ςi,j ∈ [−1, 1] if Xi,j = 0.

(72)

Now using the rotational invariance of the Gaussian distribution, we may assume without loss of generality
that x0 = (x0

1, . . . , x
0
n) be such that x0,i > 0 for i = 1, . . . , k and x0,i = 0 for i = k+1, . . . , n. This further

implies that all the entries in the k-th order sub-matrix of X0 are positive and the rest of X0 contains
zero entries. Therefore, S ∈ ∂R(X0), iff

Si,j =

{
1 if i, j ∈ [k],

ςi,j ∈ [−1, 1] otherwise.
(73)
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By employing Proposition 3.1, we get

ω2
e(Csparse; p) ≤ E

[
inf

S∈∂R(X0)
‖H − λ · S‖2F

]
(i)
= E

[ ∑
(i,j)∈[k]×[k]

(hij − 1)2 +
∑

(i,j)/∈[k]×[k]

st(hij ;λ)2
]
, (74)

where (i) follows from (73). Note that st(·;λ) denotes the soft thresholding function, which is defined as

st(h;λ) =

{
h
|h| · (|h| − λ) if |h| ≥ λ,
0 otherwise.

(75)

Next, we separately bound the two terms appearing in (74). On the one hand,

E
[ ∑

(i,j)∈[k]×[k]

(hi,j − 1)2
]

= E
[ k∑
i=1

(hii − 1)2
]

+ E
[ ∑

(i 6=j)∈[k]×[k]

(hij − 1)2
]

= k
(
λ2 + E[h2

11]
)

+ k(k − 1)
(
λ2 + E[h2

12]
)

(i)
= k

(
λ2 + 3

‖p‖22
m

)
+ k(k − 1)

(
λ2 +

‖p‖22
m

)
, (76)

where (i) follows from the following observations:

E[h2
11] =

1

m
· E
[( ∑
i∈[m]

piεia
2
i,1

)2]
=

1

m
·
∑
i∈[m]

p2
iE[a4

i,1] = 3
‖p‖22
m

(77)

and

E[h2
12] =

1

m
· E
[( ∑
i∈[m]

piεiai,1ai,2
)2]

=
1

m
·
∑
i∈[m]

p2
iE[a2

i,1a
2
i,2] =

‖p‖22
m

. (78)

On the other hand, the second term in (74) gives

E
[ ∑

(i,j)/∈[k]×[k]

st(hij ;λ)2
]

= (n− k)E
[
st(hk+1,k+1;λ)2

]
+ (n− k)(n+ k − 1)E

[
st(h1,k+1;λ)2

]
. (79)

Let’s consider a function g : R+ → R such that

g(x) =

{
(|x| − λ)2 if |x| ≥ λ,
0 otherwise.

Note that st(hij ;λ)2 = g(|hij |). Moreover, using integration by parts, the following identity holds for
a non-negative random variable U :

E[g(U)] = g(0) +

∫ ∞
0

g′(t)P[U > t]dt.
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From these, we get that

E
[
st(h1,k+1;λ)2

]
=

∫ ∞
λ

2(t− λ)P[|h1,k+1| > t]dt

(i)

≤
∫ ∞
λ

4(t− λ)e
max

{
− mt2

ψ2
1‖p‖22

,−
√
mt

ψ1‖p‖∞

}
dt

= 4 max

{∫ ∞
λ

(t− λ)e
− mt2

ψ2
1‖p‖22 dt,

∫ ∞
λ

(t− λ)e
−

√
mt

ψ1‖p‖∞ dt

}

≤ max

{
‖p‖22ψ2

1

m

(
λ
√

2
√
m

‖p‖2ψ1
− 1

)
e
− mλ2

ψ2
1‖p‖22 , 4

‖p‖2∞ψ2
1

m
e
− λ

√
m

ψ1‖p‖∞

}
, (80)

where in the last line we performed integration by parts and further used the known bound Q(x) ≤
1√
2π

1
xe
−x2/2 on the Gaussian Q-function. The inequality in (i) follows form Bernstein’s inequality (e.g.,

[28, Thm. 2.8.2]) and ψ1 is an absolute constant that denotes the sub-exponential norm of εiai,1ai,k+1

[28, Sec. 2.7]. Similarly, using the fact that εia
2
i,k+1 is also a sub-exponential random variable, say with

sub-exponential parameters ψ2, we get that

E
[
st(hk+1,k+1;λ)2

]
=

∫ ∞
λ

2(t− λ)P[hk+1,k+1 > t]dt

= max

{
‖p‖22ψ2

2

m

(
λ
√

2
√
m

‖p‖2ψ2
− 1

)
e
− mλ2

ψ2
2‖p‖22 , 4

‖p‖2∞ψ2
2

m
e
− λ

√
m

ψ2‖p‖∞

}
(81)

Call ψ := max{ψ1, ψ2} and set

λ =
ψ√
m

(
‖p‖2

√
log

(
n2

k2

)
+ ‖p‖∞log

(
n2

k2

))
Combining (76), (79), (80), (81) with (74), for this choise of λ we obtain that

ω2
e(Csparse; p) ≤ 3k2

(
λ2 +

‖p‖22
m

)
+ (n2 − k2)

k2

n2
4λ2

≤ C

m
k2

(
‖p‖2

√
log

(
n2

k2

)
+ ‖p‖∞log

(
n2

k2

))2

, (82)

for some sufficiently large absolute constant C > 0.

F Spectral norm of weighted sum of Gaussian outer products

Lemma F.1 delivers an upper bound on the spectral norm of a weighted sum of outer products of Gaussians∑m
i=1 piεiaia

T
i . The proof uses an ε-net argument and Hanson-Wright inequality for Gaussians (Lemma

F.2).

Lemma F.1. For a1, . . . ,am ∈ Rn independent copies of a standard normal vector N (0, In). ε1, . . . , εm
iid Rademacher random variables and a deterministic vector p := (p1, . . . , pm) let

H̃ =

m∑
i=1

pi · εiaiaTi
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Then, there exists constant C > 0 and sufficiently large n such that

E‖H̃‖2 ≤ C · (‖p‖2
√
n+ ‖p‖∞n).

Proof. (a). Fix v ∈ Sn−1 and consider
S := vT H̃v.

Rewriting S = 〈H̃, V 〉 for V = vvT , we may apply Hanson-Wright inequality for Gaussians (see Lemma
F.2) to find that for any t > 0:

P ( S ≥ t ) ≤ exp

(
−min

{
t2

4‖p‖22
,

t

2‖p‖∞

})
, (83)

where we also used ‖V ‖F = ‖V ‖2 = 1.
Next, let N be an 1/4-net of the sphere. By standard calculations (e.g., [28, Chapter 4] |N | ≤ 9n and

‖H̃‖2 ≤ 2 ·max
v∈N

vT H̃v. (84)

Also, E[‖H̃‖2] =
∫∞

0
P[‖H̃‖2 ≥ t]dt. Combine all these and choose δ = C1 · (‖p‖2

√
n + ‖p‖∞n) to find

the desired result as follows:

E[‖H̃‖2] ≤ δ +

∫ ∞
δ

P[‖H̃‖2 ≥ t]dt

≤ δ + 2 ·
∫ ∞
δ

P
[

max
v∈N

vT H̃v ≥ t/2
]
dt ≤ (85)

≤ δ + 2 · 9n ·max

{ ∫ ∞
δ

e
− t2

16‖p‖22 dt ,

∫ ∞
δ

e−
t

4‖p‖∞ dt

}

≤ δ + max
{

8
√
π‖p‖2e

− δ2

16‖p‖22 , 8‖p‖∞e−
δ

4‖p‖∞ dt
}

≤ C2 · (‖p‖2
√
n+ ‖p‖∞n), for sufficiently large n. (86)

Lemma F.2. Let H̃ be defined as in Lemma F.1 and V be an n× n matrix. Then, for every t ≥ 0, we
have

P
(
|〈H̃, V 〉| ≥ t

)
≤ 2 exp

(
−min

{
t2

4‖p‖22‖V ‖2F
,

t

2‖p‖∞‖V ‖2

})
(87)

Proof. Let
b := [aT1 , . . . ,a

T
m] ∈ Rmn

and
M := BlockDiag(p1ε1V, . . . , pmεmV ) ∈ Rmn×mn.

With these, note that bTMb =
∑
i∈[m] piεi tr(Vaia

T
i ) and E[bTMb] =

∑
i∈[m] piεi tr(V). Thus,

H̃ = bTMb− E[bTMb].

Then, the lemma follows immediately by Hanson-Wright inequality for Gaussian random variables (e.g.
[38, Prop. 1.1]) and the following observations:

‖M‖2F = ‖p‖22‖V ‖2F and ‖M‖2 = ‖p‖∞‖V ‖2. (88)
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